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Skin-resident innate lymphoid cells 
converge on a pathogenic effector state

Piotr Bielecki1,19,21 ✉, Samantha J. Riesenfeld2,3,4,21 ✉, Jan-Christian Hütter2,21, Elena Torlai Triglia2,21,  
Monika S. Kowalczyk2, Roberto R. Ricardo-Gonzalez5,6, Mi Lian7,8, Maria C. Amezcua Vesely1,9, 
Lina Kroehling1, Hao Xu1, Michal Slyper2, Christoph Muus2,10, Leif S. Ludwig2, Elena Christian2, 
Liming Tao2, Amanda J. Kedaigle2, Holly R. Steach1, Autumn G. York1, Mathias H. Skadow1, 
Parastou Yaghoubi1, Danielle Dionne2, Abigail Jarret1, Heather M. McGee1,11, Caroline B. M. Porter2,  
Paula Licona-Limón1,12, Will Bailis1,13,14, Ruaidhrí Jackson1, Nicola Gagliani1,15,16,17, 
Georg Gasteiger7, Richard M. Locksley6,9, Aviv Regev2,9,18,20 ✉ & Richard A. Flavell1,9 ✉

Tissue-resident innate lymphoid cells (ILCs) help sustain barrier function and respond 
to local signals. ILCs are traditionally classified as ILC1, ILC2 or ILC3 on the basis of 
their expression of specific transcription factors and cytokines1. In the skin, disease- 
specific production of ILC3-associated cytokines interleukin (IL)-17 and IL-22 in 
response to IL-23 signalling contributes to dermal inflammation in psoriasis. However, 
it is not known whether this response is initiated by pre-committed ILCs or by 
cell-state transitions. Here we show that the induction of psoriasis in mice by IL-23 or 
imiquimod reconfigures a spectrum of skin ILCs, which converge on a pathogenic 
ILC3-like state. Tissue-resident ILCs were necessary and sufficient, in the absence of 
circulatory ILCs, to drive pathology. Single-cell RNA-sequencing (scRNA-seq) profiles 
of skin ILCs along a time course of psoriatic inflammation formed a dense 
transcriptional continuum—even at steady state—reflecting fluid ILC states, including 
a naive or quiescent-like state and an ILC2 effector state. Upon disease induction, the 
continuum shifted rapidly to span a mixed, ILC3-like subset also expressing cytokines 
characteristic of ILC2s, which we inferred as arising through multiple trajectories. We 
confirmed the transition potential of quiescent-like and ILC2 states using in vitro 
experiments, single-cell assay for transposase-accessible chromatin using 
sequencing (scATAC-seq) and in vivo fate mapping. Our results highlight the range 
and flexibility of skin ILC responses, suggesting that immune activities primed in 
healthy tissues dynamically adapt to provocations and, left unchecked, drive 
pathological remodelling.

In healthy individuals, most effector skin ILCs are ILC2s2,3, producing the 
cytokines IL-5 and IL-13. ILC3s occur in human and mouse psoriatic 
skin4–6, and their numbers decrease in response to therapeutic com-
pounds5, suggesting that they contribute to pathogenesis. It remains 
unknown how and when the numbers of ILC2s and ILC3s shift during 
disease progression. Some reports indicate that ILCs may switch or 
mix effector programs7–14, but it is unknown whether ILC3s increase 
in psoriatic inflammation by expansion15,16, by conversion of ILC2s, by 

differentiation of tissue-resident ILC progenitors17,18, by recruitment of 
circulating cells19–21, or by a combination of these mechanisms.

Skin ILCs initiate inflammatory response
We used a mouse model of psoriasis, with subcutaneous injection of 
IL-23—a crucial signal and therapeutic target22—leading to inflamma-
tion and skin thickening (Fig. 1a, Extended Data Fig. 1a). Whereas in 
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the absence of all lymphocytes (in Rag2−/−Il2rg−/− mice), the response 
was minor and probably the result of tissue injury, there was a marked 
response in mice with ILCs but deficient in T cells and B cells (Rag1−/− 
mice) (Fig. 1b, Extended Data Fig. 1b, c). IL-17A expression was lower 
in Rag1−/− mice than in wild-type mice, suggesting that T cells provide 
additional cues. γδ T cells are implicated in longer-term disease mod-
els6,23, but mice lacking γδ T cells (Tcrd–/–) responded similarly to the 
wild-type mice in our model (Fig. 1b, Extended Data Fig. 1b). Further-
more, skin ILCs adoptively transferred from untreated wild-type mice 
into Rag2−/−Il2rg−/− mice conferred significant IL-23-induced skin thick-
ening (Extended Data Fig. 1d). This response required RORγ, a master 
regulator of ILC3s, T helper 17 (TH17) cells and γδ T cells (Extended Data 
Fig. 1e). Thus, ILCs were sufficient to drive a psoriatic response to IL-23.

To assess the involvement of circulatory versus tissue-resident ILCs, 
we compared control mice with mice treated with FTY720, which have 
limited T cell egress and trafficking of circulatory, induced ILC2s20. 
Both wild-type and Rag1−/− FTY720-treated mice had reduced circu-
lating total white blood cells but exhibited no additional phenotypic 
differences upon IL-23 administration (Fig. 1c, Extended Data Fig. 1f, 
g). Inflammation and skin thickness, which resolved after initial IL-23 
injections, significantly worsened upon rechallenge with secondary 
injections, even with FTY720 co-treatment during primary injections 
(Fig. 1d, Extended Data Fig. 1h, i), suggesting that the heightened 

secondary response was not owing to earlier ILC recruitment. Thus, 
similar to a type 2 inflammation model16, ILCs resident in tissue were 
sufficient to drive inflammation.

Topic modelling of scRNA-seq time course
To investigate transcriptional dynamics during psoriasis initiation, we 
collected scRNA-seq profiles of skin ILCs from IL-5 fate-reporter mice 
before induction (day 0) and every day for four days of IL-23 treatment 
(Fig. 1a, Extended Data Fig. 1j). Cells spanned a transcriptional continuum, 
embedded as a ‘cloud’ with ‘extensions’, including one that emerged 
after induction (Fig. 1e, Methods). Many key genes, aside from broadly 
expressed transcription factors required in ILC2s24 (Gata3 and Bcl11b), 
exhibited complex patterns (Extended Data Fig. 2a). We used latent Dir-
ichlet allocation (LDA)25, a probabilistic grade-of-membership model26,27, 
to capture continuous and composite states across time points. LDA rep-
resents each cell as a mixture of de novo inferred ‘topics’ or programs28, 
modelled as distributions over genes (Extended Data Fig. 2b).

Our 17-topic model coherently captured distinct functional 
programs (Fig. 1f–k, Extended Data Figs. 2–4, Methods). Topic 1, 
‘quiescent-like’, highlights genes characteristic of resting, naive and 
central-memory T cells29, including transcription factors associated 
with T cell and B cell quiescence (Klf230, Klf430 and Zfp36l231), the TH17 

d

0 5 10 15 20
0

0.2

0.4

0.6

DayPrimary Secondary

c

S
ki

n 
th

ic
kn

es
s

in
cr

ea
se

 (m
m

) IL-23
PBS

Day

0

0.1

0.2

0.3 IL-23
IL-23 + FTY720

0 1 2 3 4 5

a b

0 1 2 3 4
Day

S
ki

n 
th

ic
kn

es
s

in
cr

ea
se

 (m
m

)

0

0.2

0.4

0.6

WT
Rag1–/–

Rag2–/–Il2rg–/–

Tcrd–/–

P < 0.0318

P < 0.0032
P < 0.0037

S
ki

n 
th

ic
kn

es
s

in
cr

ea
se

 (m
m

)

Skin thickness
measurement

Injection

Sample collection

rIL-23
(500 ng)

0 1 2 3 4Day

e

Nfkbia
Lif

Cd70
Itga4
Lilr4b
Rpl35
Plscr1
Tnfsf9
Hes1
Arg1

Ctla2a
Ccdc184

Csf2
Lmo4
Ly6c1
Cxcl3

Gm20186
Ptgs2

Hilpda
cre (Il5)

Cxcl1
Il1rl1
Areg
Ccl1

Cxcl2

Rgs1
Nfkbia

AW112010
Csf2

Gcnt2
Zeb2

Ccl20
Il17re

Cd6
Trgv2
Cxcl3
Gngt2

Ppp1r14c
Lgals3

Blk
Il23r

Tcrg-C2
Il1r1

Timp1
Cd3e
Cd3d
Il17a
Il22

Il17f
Gzmb

Topic 1 Topic 1

Topic
weight

Expression

Expression

Ier2
Rgs1

Tsc22d3
Ppp1r15a

Srsf3
Gm26532

Nfkbia
Zfp36l2
Cited2

Fus
Snhg12

Gm26825
Atf3
Egr1

Rsrp1
Cd69

Slc38a2
Gadd45b

Jun
Dusp1

Fosb
Zfp36

Klf2
Klf6
Fos

0.
00

05
1

0.
00

51
0.

05
1

0.
00

26
0.

02
6

0.
26

Score

Fos
0
1
2
3
4

FD
L2

FDL1

Klf2
0
1
2
3
4

f g

0.2

0

0.4

0.6

To
p

ic
 w

ei
gh

t

Topic 2

FD
L2

FD
L2

FD
L2

FD
L2

FD
L2

FD
L2

FD
L2

Topic
weight

Expression

Score
0.

00
12

0.
01

2
0.

12

Score

FD
L2

FD
L2

Cxcl2
0

2

4

Expression

Il1rl1
0

1

2

h i

0.2

0.4

0.1
0

0.3

Topic
weight

0.50

0.75

0.25

0

Topic 2 Topic 3

Il17a

Expression

Expression

0
1
2
3
4

Il23r
0

1

2

j k Topic 3

Day 0 Day 1 Day 2 Day 3 Day 4

FDL1 FDL1

P < 0.0014

P < 0.0125
NS

P < 0.0001
P < 0.0001

P < 0.0001
P < 0.0062

P < 0.0001
P < 0.0001

P < 0.0001

NS

NS

NS

NS NS

NS

FDL1

WT

Fig. 1 | Skin ILCs drive IL-23–induced pathology. a, Study overview. rIL-23, 
recombinant IL-23. b–d, Tissue-resident ILCs are sufficient to drive IL-23–
induced inflammation. Increase in skin thickness over time in wild-type (WT) 
(black), Rag1−/− (blue), Rag2−/−Il2rg−/− (magenta) and Tcrd−/− (grey) mice (b; n = 7 
mice per group, 2 independent experiments), wild-type mice with (red) and 
without (black) FTY720 treatment (c; n = 6 mice per group, no significant 
difference), and wild-type mice during primary and secondary IL-23 challenge 
(black) (n = 8 mice) or saline control (blue) (PBS) (d; n = 5 mice, 2 independent 
experiments). Data are mean ± s.d.; P values determined by repeated measures 
two-way analysis of variance (ANOVA) with Geisser–Greenhouse correction, 

Bonferroni adjusted. In b, Rag2−/−Il2rg−/− are a negative control group. NS, not 
significant. e, scRNA-seq profiles of cells (dots), highlighted by time point 
(panel title, dots in blue, versus grey for other time points) in a force-directed 
layout (FDL) embedding of a k-nearest-neighbours graph. f–l, Topic modelling 
of ILC scRNA-seq data infers functional programs. For topic 1 (f, g), topic 2 (h, i) 
and topic 3 ( j, k), genes are ranked by a score distinguishing each topic from 
others (f, h, j), and cells are coloured by topic weight (top) or normalized 
expression (log-transformed scTransform-corrected counts) of topic- 
associated genes (middle and bottom) (g, i, k).
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repressor Tsc22d332, and Id333, which is associated with regulatory ILCs 
(Fig. 1f, g, Extended Data Figs. 2d, 5a–c). Topic 2, ‘ILC2’, features genes 
associated with ILC2 and TH2 cells1 (Il5, detected using a cre reporter, 
and Il1rl1, which encodes the IL-33 receptor ST2) and chemokine genes 
(Cxcl2 and Ccl1) (Fig. 1h, i, Extended Data Fig. 2e). Topic 3, ‘ILC3-like’, is 
induced in a time-dependent manner and enriched in proinflamma-
tory, ILC3- and TH17-associated genes1 (Il22, Il17a, Il23r, Il1r1, Gzmb, 
Lgals3 and Csf2); cells scoring high in topic 3 also preferentially 
expressed Rorc, which encodes RORγ (Fig. 1j, k, Extended Data Figs. 2a, 
f, 5a). γδ and pan–T cell markers in topic 3 (for example, Trgc2, which 
is also known as Tcrg-C2, and Cd3d) have previously been observed in 
ILC3s34,35. Topic 4, ‘Il2-high’, includes Il236, other ILC2-associated genes 
(Il13, Areg and Il4), and T-cell-associated genes (Tnfsf9, which encodes 
4-1BB ligand37) (Extended Data Figs. 2a, g–j, 5a). Topic 5, ‘Calca-high’, 
was downregulated over time and features the ILC2 regulator Icos and 
Cxcr6, as well as Calca, which encodes CGRP—a neuropeptide that 
suppresses ILC2 responses38—whose receptor component Ramp1 was 
upregulated in ILC3-like cells (Extended Data Figs. 2a, k–n, 4, 5d–f). 
Topics 6 and 7 feature other immune functions (for example, the major 
histocompatibility class II genes, H2-Aa and H2-Eb1) (Extended Data 
Fig. 2o–v). Some topics (8–10) are dominated by essential cellular 
functions (Extended Data Fig. 3a–f), possibly reflecting biological 
activation35.

ILC3-like cells may arise via many paths
ILC3-like cells (topic 3 high) emerged and increased rapidly after IL-23 
induction (Extended Data Fig. 4) from 0.6% of ILCs before induction 
to 2.1% by day 1 and 9.7% by day 3. This is unlikely to be solely the result 
of expansion, which we estimate would require a cell-cycle period of 

about 13 h—half that observed in rapidly expanding ILCs35—and would 
lead to higher-than-observed ‘proliferation-related’ topic 17 weights 
(Extended Data Fig. 3s, Methods). ILC3-like cells also express other 
topics, suggesting partial maintenance of pre-existing features as they 
activate the ILC3-like program (Extended Data Fig. 4).

To infer which cells at each time point give rise to ILC3-like cells at day 4,  
we performed optimal-transport analysis using Waddington-OT39, 
which predicted that ILC3-like cells arise through different trajec-
tories, spanning a broad set of cells across the continuum (Fig. 2a). 
Hence, we adapted URD, our directed-diffusion method40 to infer 
pseudotime-based trajectories41 across all time points (Fig. 2b–f, 
Extended Data Fig. 6a–d, Methods). In agreement with Waddington-OT, 
these results predicted that ILC3s arise from multiple states: (1) 
quiescent-like cells, via intermediate states displaying combined 
expression of topic 1 genes with topic 3 genes (for example, Klf2 
with Gzmb, and Tsc22d3 with Il22) (quiescent-to-ILC3-like trajec-
tory) (Fig. 2b–d); (2) ILC2s, via two routes, through the cloud (Fig. 2b, 
centre, solid arrow) or a sparse, short path (Fig. 2b, centre, dashed 
arrow) distinguished by high chemokine expression (Cxcl2 and Cxcl3) 
(ILC2-to-ILC3-like trajectory) (Fig. 2b, e, f, Extended Data Fig. 6e, f); and 
(3) a Ccl5-high subset of topic-7-high cells (cloud-to-ILC3-like trajec-
tory) (Fig. 2b, Extended Data Figs. 2s–v, 6a, b). Trajectories through 
the cloud expressed heat-shock-protein genes (Hspa1a and Hspa1b) 
(Fig. 2b–f, Extended Data Fig. 6a–d, g, h). For context, we examined 
tissue-specific expression of genes previously associated with ILC 
precursors17,18,42–44, which featured in ILC3-like cells (Zbtb16, Pdcd1, 
Tox2 and Gimap5), in ILC2s (Kit and Itga4), or more broadly (Il18r1, 
Tcf7 and Tox) (Extended Data Fig. 7). The heterogeneity of ILC3-like 
cells may reflect their diverse origins; for example, those originating 
from ILC2s are the first to appear, and express different genes from 

a

c

d

FD
L2

FD
L2 FD

L2

Day 0 Day 1 Day 3 Day 4Day 2

FDL1 FDL1

Day 0 Day 1 Day 2 Day 3 Day 4

Day 0

e

f0.0 0.2 0.4 0.6 0.8 1.0
Pseudotime
Klf2 + Gzmb

Tsc22d3 + Il22

0
1
2
3
4

E
xp

re
ss

io
n

Ancestor
probability

Day 1 Day 2

FDL1
0.005

0.000

Day 3 Day 4

Il13
Tsc22d3

Zfp36
Klf2
Fos

Jun
Egr1

Hspa1a

Il23r
Rorc

Gzmb
Il22

Il17a

Predicted ancestors

Starting 
Other day 4 
Other days

b

≤1 on
Both on

0 1

Pseudotime

FD
L2

Quiescent-to-ILC3-like ILC2-to-ILC3-like Cloud-to-ILC3-like ILC2-to-quiescent-like

FDL1

≤1 on
Both on

0.0 0.2 0.4 0.6 0.8 1.0
Pseudotime

Ramp3 + Il23r
cre (Il5) + Il22

0
1
2
3
4
5

E
xp

re
ss

io
n

Ccl1
Il1rl1

cre (Il5)
Il13

Ramp3
Gata3

Lgals3
Hspa1a

Gzmb
Rorc
Il23r
Il17a
Il22

Fig. 2 | Convergent transitions to ILC3-like cells. a, Optimal transport 
predicts that ILC3-like cells arise from a broad range of skin ILCs. FDL 
embedding (as in Fig. 1e, but excluding proliferating cells) with cells for each 
day (0–3) coloured by the estimated probability that they are ancestors (low, 
orange; high, purple; grey for other days) of day-4 ILC3-like cells. In the day-4 
panel (right): day-4 ILC3-like, blue; day-4 not-ILC3-like, orange; cells from days 
0–3, grey. b–f, Multiple simultaneous inferred trajectories leading to ILC3-like 
cells. b, FDL embedding (as in a) of cells coloured by pseudotime (early, cyan; 
late, fuchsia) if they are part of the inferred trajectory (other cells in grey) for 

(left to right): quiescent-to-ILC3-like, ILC2-to-ILC3-like, cloud-to-ILC3-like, and 
ILC2-to-quiescent-like trajectories. Arrows indicate trajectory directions; 
dashed arrow indicates secondary, sparse ILC2-to-ILC3-like trajectory. c–f, For 
the quiescent-to-ILC3-like trajectory: FDL embedding (as in a) with cells in the 
trajectory highlighted in blue for each day (panel title, all other cells in grey) (c), 
and heat map of co-expression (top) and normalized expression (bottom) of 
trajectory-associated genes (rows) in cells (columns) ordered by 
pseudotime (colour bar, top) (d). Analogous plots are shown for the 
ILC2-to-ILC3-like trajectory (e, f). Expression of cre reports Il5 activity.



Nature  |  Vol 592  |  1 April 2021  |  131

those derived from quiescent-like cells (Il17a, Gzmb and Bcl2a1b versus 
Timp1, Hspa1a and Hspa1b) (Fig. 2c, e, Extended Data Fig. 4, 6e–h). State 
transitions may also occur at steady state. For example, a pre-induction 
ILC2-to-quiescent-like trajectory, which may be bidirectional, may 
create alternative paths to ILC3-like activation (Fig. 2b, Extended Data 
Fig. 6c, d). Overall, the analyses indicate that IL-23 triggered ILC3-like 
activation across a spectrum of skin ILCs.

Chromatin evidence of ILC3-like potential
To test whether chromatin displays a capacity for transitions before 
stimulation, we performed scATAC-seq on ILCs from naive and 
IL-23-induced (day 4) mice (Fig. 3a, Extended Data Fig. 8a, Methods). 
Similar to results from scRNA-seq, gene ‘activity’, quantified on the 
basis of loci accessibility45, indicated that ILC2-specific genes (Il5, 
Il13 and Il1rl1) were active in cells both before and after induction, 
whereas at ILC3-specific gene loci (Il23r, Il22 and Il17a), more cells 
exhibited activity after induction (Fig. 3b, Extended Data Fig. 8b). 
By contrast, binding sites for transcription factors associated with 
ILC3s and TH17 cells (RORγ, BATF46,47 and STAT346) were accessible 
in cells before induction (as were binding sites for the ILC2- and 
TH2-associated transcription factor GATA3), even in cells with inactive 

ILC3 genes. The accessibility of these sites increased after induction, 
as did accessibility at binding sites for TCF7, which is associated with 
ILC precursor cells (Fig. 3c, Extended Data Figs. 7a, 8c). Consistent 
with quiescent-like topic 1, for which we also validated GILZ produc-
tion (encoded by Tsc22d3), binding sites for KLF4 were accessible, 
concurrent (after induction) with increased accessibility of binding 
sites for ILC3-associated transcription factors (Fig. 3c, Extended Data 
Fig. 8c, d). Thus, ILC2-biased and quiescent-like skin ILCs exhibited 
the potential for ILC3-like responses.

ILC3-like potential validated in vitro
Skin ILCs rapidly expressed genes associated with ILC2s or ILC3s when 
stimulated in vitro (Extended Data Fig. 8e). To further validate the 
ILC3-like transition potential of quiescent-like cells, we cultured KLF2+ 
and KLF2– skin ILCs (from KLF2–GFP reporter mice) (Fig. 3d, Methods) 
under ILC3-inducing, ILC2-inducing or control conditions. Cells in 
ILC3- or ILC2-inducing (but not control) conditions produced substan-
tial amounts of IL-5 and IL-17A (Fig. 3e, Extended Data Fig. 8f). We also 
confirmed the ILC3-like transition potential of IL-5-producing skin ILCs 
in vitro (Extended Data Fig. 8g, h). These results support the predicted 
trajectories leading to ILC3-like cells.
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Fig. 3 | Skin ILCs from naive mice have ILC2 and ILC3-like potential. a–c, 
Accessible chromatin at ILC2- and ILC3-related loci, assayed by scATAC-seq. 
Uniform manifold approximation and projection (UMAP) embedding of 
profiles (dots) coloured by treatment condition (day-0 untreated, green;  
day-4 IL-23-induced, pink) (a) or accessibility in untreated (top) or IL-23- 
induced (bottom) mice of ILC-associated gene loci (activity scores) (b) and 
transcription factor-binding sites (per-cell motif activity scores; Methods) (c). 
JASPAR motif IDs are shown in parentheses. d, e, KLF2-producing ILCs become 
ILC3-like cells in vitro. d, Representative fluorescence-activated cell sorting 
(FACS) profiles of KLF2-GFP+ CD3 T cells and skin ILCs from KLF2GFPtg/tg mice, 
and GFP+ skin ILCs from wild-type control mice. Cells are pre-gated as live 
CD45+Lin−IL-7Rα+ ILCs. e, Numbers (leftmost panel) of KLF2GFP+ or KLF2GFP− skin 
ILCs cultured in control (ctrl) or ILC3-inducing (ILC3 cond.) conditions, and 

percentages (right three panels) of these cells producing IL-5, IL-17 or both IL-5 
and IL-17, by intracellular staining after 2.5 h of stimulation with phorbol 
12-myristate 13-acetate (PMA) and ionomycin (n = 4 wells (control), n = 12 wells 
(GFP+) and n = 11 wells (GFP−); 3 independent experiments). Error bars are 
mean ± s.d.; P values determined by unpaired, two-tailed t-test. f, g, In vivo 
validation of ILC2-to-ILC3-like trajectories. f, Possible reporter outcomes for 
ILC3-like cells with (top) or without (bottom) an ILC2-to-ILC3 transition, using 
an IL-5 fate IL-17AGFP IL-22BFP reporter mouse. g, Numbers of cells producing IL-5, 
IL-22 and IL-17A, including among cells previously producing IL-5 (exIL-5, YFP+), 
with and without IL-23 primary and secondary treatments (n = 5 mice  
(PBS control), n = 8 mice (IL-23); 2 independent experiments). Error bars are 
mean ± s.d.; P values determined by two-way ANOVA, Bonferroni adjusted.
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Fate mapping confirmed ILC2 to ILC3 transition
To test the model in vivo, we used IL-5 fate-reporter mice crossed 
with both IL-22-IRES-sgBFP and IL-17-IRES-GFP mice. At least 10% of 
ILC3s producing IL-22 (or IL-17A) on day 4 after IL-23 induction had 
previously produced, but were not currently producing, IL-5, a frac-
tion (designated ‛exIL-5’) that further increased following rechallenge 
(Fig. 3f, g, Extended Data Figs. 1j, 9a). In an alternative psoriasis model, 
imiquimod48 induced more IL-17A production and IL-17A-expressing 
exIL-5 cells, but fewer IL-22-expressing cells (Extended Data Figs. 1j, 
9b). Alternative ILC2 tracing by IL-13 fate-reporter mice (Methods) 
showed that IL-13 fate-mapped cells had similar expression of genes 
associated with ILC2s (Il5 and Il13) before and after IL-23 induction, 
but significantly higher expression of Il17a, Il22, Il23r and Rorc after 
induction (Extended Data Fig. 9c). Finally, we validated IL-23-induced 
cells producing both IL-13 and IL-17A or both IL-13 and IL-22 using intra-
cellular staining and Il13Smart/SmartIl17aSmart/Smart reporter mice (Extended 
Data Fig. 9d–h, Methods). IL-13 was produced in at least 11% of cells 
producing IL-22 in wild-type and Tcrd−/− mice (57% of IL-22 producing 
cells in Rag1−/− mice), with similar patterns for IL-17A, with or without 
stimulation with PMA and ionomycin. These results validated in vivo 
the ILC effector transitions and the adoption of mixed ILC2–ILC3 states.

Conclusion
We combined longitudinal scRNA-seq, scATAC-seq, in vitro experi-
ments and in vivo fate mapping in mouse models of psoriasis to char-
acterize skin ILCs and their potential transitions. We inferred that they 
exist in continuously varying states, underlining the limitations of 
experimental and computational analyses that treat ILCs as discrete 
types. Tissue-resident ILCs, including quiescent-like cells and ILC2s, 
responded to IL-23 by activating a convergent, pathology-inducing 
ILC3-like program, characterized by co-production of IL-13 and IL-22 
or of IL-13 and IL-17A. Such partially committed, flexible cell states may 
enhance tissue resilience, consistent with studies of haematopoie-
sis49,50, with the probabilities of cell-fate transitions shifting upon 
stress-inducing perturbations.
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Methods

Mice
C57BL/6, Tcrd−/− and Rosa26flox-STOP-flox YFP  (R26YFP) Ai3(RCL-EYFP) mice 
were purchased from Jackson Laboratories. Rag1−/− and Rag2−/−IL2rg−/− 
mice were purchased from Taconic Biosciences. Il5cre/tdTomato (Red5 (R5)) 
were from the of R.M.L. laboratory. KLF2-GFPtg/tg mice51 were provided 
by K. Hogquist. The IL-5 fate reporter in this work was generated by 
crossing Red5 mice with R26YFP, IL-17-IRES-eGFP (Il17aGFP) (ref. 52) 
and IL-22-IRES-sgBFP (Il22BFP) mice generated in our laboratory. The 
IL-22-IRES-sgBFP mouse was generated by integrating an IRES-sgBFP 
reporter into the 3′ UTR of the Il22 gene on chromosome 10 to faithfully 
report IL-22 expression without disruption of IL-22 expression itself. 
In brief, a targeting vector was generated in the plasmid pEasyFlox in 
which a 2.9-kb short arm of the Il22 gene was followed by IRES (640 
bp), the gene encoding BFP (735 bp), a floxed neomycin gene for selec-
tion and a long arm encoding the 3′ end of Il22. This vector was then 
transfected into LC-1 cells, an albino C57BL/6 embryonic stem-cell line 
derived in our lab. After the addition of G418, clones were screened 
for correct orientation and insertion of the construct by PCR. One 
clone was selected for injection into C57BL/6 blastocysts and then 
injected into pseudopregnant CD-1 mice. Putative chimaeric mice were 
screened by their white coat colour and then identified by PCR of tail 
DNA. Chimeric males were bred to C57BL/6 females to obtain mice with 
a germ-line transmitted heterozygous BFP reporter gene. We further 
crossed heterozygotes to generate mice homozygous for the reporter. 
To maximize Cre recombination and increase the signal of R26YFP posi-
tive cells, we used homozygous Il5cre/tdTomato mice. We observed little to 
no difference in IL-23 induced skin thickening (Extended Data Fig. 9i). 
Il13Smart (Smart13; B6.129S4(C)-Il13tm2.1Lky/J; 031367)53 mice and Il17aSmart 
(Smart17; B6.129S4-Il17atm1.1Lky/J; 032406)54 mice were generated as pre-
viously described and intercrossed to generate Il13Smart/SmartIl17Smart/Smart  
mice for experiments. Il13YetCre (YetCre-13, C.129S4(B6)-Il13tm1(YFP/cre)Lky/J; 
017353) mice were generated as previously described55 and backcrossed 
to C57BL/6 mice for at least 8 generations. R26RAi14RFP (B6.Cg-Gt(ROSA)26
Sortm14(CAG-tdTomato)Hze/J; 00714) mice were purchased from Jackson Labora-
tories and crossed to Il13YetCre/YetCre mice to generate Il13YetCre/+;R26RAi14RFP/+ 
mice.

All mice were kept under specific pathogen-free conditions in 
the animal facility at Yale University or University of California, San 
Francisco or University of Würzburg (ZEMM). Age- and sex-matched 
littermates between 10 and 14 weeks of age were used for all experi-
ments. Unless otherwise specified, mice were randomly assigned to 
different experimental groups and each cage contained mice of all 
different experimental groups. Both male and female mice were used 
in experiments. Animal procedures were approved by the Institutional 
Animal Care and Use Committee (IACUC) of Yale University, University 
of California, San Francisco, or local authorities for the University of 
Würzburg (ZEMM). Preliminary experiments were tested to determine 
sample sizes, taking available resources and ethical use into account.

Psoriasis model
The psoriasis model in this study is based on recombinant IL-23 sub-
cutaneous injections22 or imiquimod treatment48. For the IL-23 model, 
500 ng IL-23 in 20 μl (provided by Abbvie or purchased from R&D Sys-
tems for scRNA-seq experiments) was injected daily into the dermis 
of the ear of anaesthetized mice on each of 4 consecutive days. As a 
control, 20 μl PBS was used with the same injection intervals. For the 
second challenge experiment, we waited 14 days, monitoring skin thick-
ness before repeating the 4-day injection regimen. Skin thickness was 
measured daily with calipers. When indicated, FTY720 (1 mg kg−1) was 
dissolved in PBS and administered intraperitoneally on day −1, 1 and 
3 of the experiment. Skin tissue was collected on day 5 for histology 
imaging, flow cytometry analysis or cell sorting. For the imiquimod 
model, 5% imiquimod cream was applied topically on both ears of each 

treated mouse for 10 days. Skin tissue was collected on day 10 for flow 
cytometry.

Isolation of skin lymphocytes
Ventral and dorsal dermal sheets of ears were separated, minced and 
incubated in RPMI medium containing 0.4 mg ml−1 Liberase TM (Roche 
Diagnostics) and 60 ng μl−1 DNaseI (Sigma). After digestion, the suspen-
sion was passed through and further mechanically disrupted with a 
syringe plunger and a 70-μm cell strainer. Lymphocytes were enriched 
by gradient centrifugation in 27.5% Optiprep solution (Sigma) and 
RPMI medium containing 5% fetal bovine serum (FBS). Spleens were 
mechanically disrupted using a syringe plunger in complete RPMI. Cells 
were filtered through 70-μm nylon mesh and washed.

Flow cytometry and cell sorting
Cells were stained with monoclonal antibodies and ILCs were defined 
as CD45.2+CD90.2+, Lin− (CD4, CD8, CD11b, CD11c, CD19, B220, NK1.1, 
Ter119, Gr1 and FcεRIa) and TCRβ−TCRγ−CD3ε−. For experiments with 
Il13Smart/SmartIl17aSmart/Smart and Il13YetCre/+;R26RAi14RFP/+ mice, ILCs were 
defined as CD45.2+CD90.2+IL-7Rα+ and Lin− (CD3, CD4, CD5, CD8α, 
CD11b, CD11c, CD19, NK1.1, F4/80, Gr-1, CD49b, FcεRIa and Ter119). For 
analyses of ex vivo IL-13 and IL-17A production, cells were stained using 
anti-human CD4 (clone RPA-T4, 1:20, Biolegend) and anti-human CD271 
(also known as NGFR) (Clone ME20.4, 1:20, Biolegend), respectively. 
For intracellular cytokine staining, cells were re-stimulated for 6 h at 
37 °C with PMA (Sigma, 50 ng ml−1) and ionomycin (Sigma, 1 μg ml−1) 
with Golgistop (BD Bioscience) added after an initial 2 h of stimulation. 
Single-cell suspensions used for intracellular staining without PMA 
and ionomycin stimulation were treated for 2 h with Golgistop. Next, 
cells were fixed and stained with BS Cytofix/Cytoperm reagent (BD 
Biosciences) according to the manufacturer’s protocol. Intracellular 
cytokines were stained with antibodies to IL-13, IL-17A and IL-22. Total 
ILCs were sorted as live, CD45+CD90+Lin− (CD4, CD8, CD11b, CD11c, 
CD19, B220, NK1.1, Ter119, Gr1, FcεRIa), CD3ε−TCRγ− cells into PBS, 0.2% 
FBS. ILCs from KLF2-GFPtg/tg reporter and Red5 reporter for in vitro cul-
tures were sorted as live, CD45+IL-7Rα+Lin− (CD3ε, CD5, CD11b, CD11c, 
CD19, B220, NK1.1, Ter119, Gr1, FcεRIa, TCRβ, TCRγ) and GFP+ or GFP− for 
KLF2 expression, or CD103+ for IL-5 expression in Red5 mice. Antibody 
list, clones, catalogue numbers and dilutions used for staining are pro-
vided in Supplementary Table 1. BD FACSDiva 7 software was used to 
collect raw data files from all flow cytometry experiments. All resultant 
data files were analysed using FlowJo version 9 or newer.

Cell culture of sorted ILC subsets
For in vitro experiments measuring gene expression, 5,000 ILCs were 
cultured per well of a 96-well round bottom plate in Click’s medium with 
10 ng ml−1 IL-2 (R&D Systems) and 25 ng ml−1 IL-25 (R&D Systems) with 
10 ng ml−1 IL-33 (R&D Systems) or 25 ng ml−1 IL-23 with 10 ng ml−1 TGFβ 
(R&D Systems) and 10 ng ml−1 IL-1β (R&D Systems). Cells were collected 
for RNA extraction, reverse transcription with SuperScript III reverse 
transcriptase (Thermofisher; 18080044) and quantitative real-time 
PCR (rtPCR) after 5 days of culture at 37 °C and 5% CO2.

For polarization and FACS analysis of IL-5+ or KLF2GFP-positive sorted 
ILCs, cells were seeded onto mitomycin-C-treated OP9-DL1 feeder cells. 
Approximately 50 cells per well were cultured in 96-well plates at 5% CO2 
in 200 μl RPMI 1640 (GlutaMAX Supplement; ThermoFisher Scientific; 
61870010) supplemented with 10% fetal calf serum (Sigma-Aldrich, 
F7524-500ML), 1× penicillin–streptomycin (Gibco; 10378016) and 50 
nM 2-mercaptoethanol (ThermoFisher Scientific; 31350010). Cells 
were cultured in the presence of 25 ng ml−1 IL-2 (PeproTech; 212-12), IL-7 
(PeproTech; 217-17) and SCF (Peprotech; 250-03) and further comple-
mented with 10 ng ml−1 IL-1β (PeproTech; 211-11B), IL-23 (eBioscience; 
14-8231-63), IL-18 and 2 ng ml−1 rhTGFbeta (PeproTech; 100-21) for ILC3 
polarization or 10 ng ml−1 IL-33 (Biolegend; 580506) and IL-25 (R&D; 
1399-IL-025/CF) for ILC2 polarization on day 9 for another 7 days. Three 
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days after sorting and then every other day, 100 μl of medium was 
replaced with fresh medium containing cytokines. FACS analysis was 
performed on day 16 after 2.5 h of PMA and ionomycin re-stimulation 
in the presence of monensin and brefeldin A.

Preparation of OP9 feeder cell layer
OP9-DL1 feeder cells were grown in 1× MEM Alpha (Gibco; 12561-056) 
supplemented with 20% fetal calf serum (Sigma-Aldrich; F7524-
500ML), 1× penicillin–streptomycin (Gibco; 10378016) and 50 nM 
2-mercaptoethanol (ThermoFisher Scientific; 31350010). OP9-DL1 
cells were grown until 80–90% confluent and treated with 10 μg ml−1 
mitomycin C (Sigma-Aldrich; M0503-2MG) for 1.5 h. Cells were washed 
four times with PBS and detached with trypsin–EDTA (Gibco; 10378016) 
at 37 °C for 2–3 min. Cells were resuspended in fresh complete T cell 
culture medium, and cell concentration was adjusted to seed approxi-
mately 30,000–35,000 cells in 100 μl of medium per well of a 96-well 
round bottom plate.

Adoptive ILC transfer
Total skin ILCs were purified by FACS and collected in PBS with 5% 
serum. Cells were washed twice with 1× PBS and injected (10,000 
cells per mouse in 100 μl) into the retro-orbital vein of anaesthetized 
Rag2−/−Il2rg−/− mice. IL-23 injection experiments were performed  
14 days after transfer.

RNA extraction and rtPCR
RNA from in vitro cultures was isolated with RNeasy Mini Kit (QIA-
GEN) and rtPCR was performed using KAPA Probe Fast qPCR Master 
Mix 2x Kit (Kapa Biosystems) with TaqMan probes (Applied Biosys-
tems) in a StepOne cycler (Applied Biosystems). The cycle threshold 
(CT) values from duplicate rtPCR reactions were extracted from the  
StepOne cycler to Excel and were analysed with the relative quantification  
ΔCT method. RNA from IL-13 fate-mapped and not fate-mapped ILCs 
were sorted from Il13YetCre/+;R26RAi14RFP mice as CD45.2+CD90.2+RFP+Lin− 
or CD45.2+CD90.2+RFP−Lin−, respectively. Cells were sorted directly 
into RLT Plus Lysis Buffer using a MoFlo XDP (Beckman Coulter). RNA 
extraction was done using the RNeasy Plus Micro Kit (Qiagen; 74034) 
according to the manufacturer’s instructions and reverse transcribed 
using the SuperScript Vilo Master Mix (Invitrogen; 11754). The resulting 
cDNA was used as template for rtPCR with Power SYBR Green reagent 
(Applied Biosystems; 4367689) using the primers as indicated in (Sup-
plementary Table 2) on a StepOnePlus cycler. Samples were analysed by 
the ΔCT method using Rps17 for normalization using StepOne software 
(Applied Biosystems).

Single-cell RNA-seq
Skin ILCs were isolated from ears of IL-5 fate reporter mouse from naive 
mice (day 0) and at daily intervals thereafter along a four-day time course 
of IL-23 treated mice (1,2,3, and 4 days post-injection; n = 5 mice per 
group). Total skin ILCs were sorted as CD45.2+CD90.2+Lin−TCRγ−CD3ε−. 
To reduce batch effects, while maintaining a reasonable experimental 
workflow, IL-23 injections were staggered, such that single-cell sus-
pensions with subsequent sorting were collected in two rounds: one 
for day 0 and day 1, and another for days 2, 3 and 4. Sorted cells were 
washed with PBS, 0.04% Bovine Serum Albumin (BSA) and processed 
for droplet-based 3′ end massively parallel scRNA-seq: sorted ILCs were 
encapsulated into droplets, and libraries were prepared using Chro-
mium Single Cell 3′ Reagent Kits V3 according to the manufacturer’s 
protocol (10x Genomics). scRNA-seq libraries were sequenced on an 
Illumina Nextseq 550, using a 75 cycle High Output kit.

cre dial-out PCR
To quantify cre, as a proxy for Il5 expression, a cre-specific primer 
was selected approximately 200 bp upstream from the polyA signal 
motif (AAUAAA) for the cre that was used to generate the mouse in this 

study. Primers were ordered from Genewiz: cre primer: 5′- GTGACTG-
GAGTTCAGACGTGTGCTCTTCCGATCTGGTGTGTCCATCCCTGAAAT 
-3′, P7-index primer: 5′- CAAGCAGAAGACGGCATACGAGAT[index]
GTCTCGTGGGCTCGGAGATGTG -3′, P5 primer: 5′- AATGATACGGC-
GACCACCGAGATCTACACTCTTTCCCTACACGACGCTC -3′.

PCR was conducted with 20 μl reaction consisting of 2 μl dilute tem-
plate, 2 μl of 10 μM P5 primer, 2 μl of 1 μM of cre primer, 2 μl of 10 μM 
P7-index primer, 2 μl H2O and 10 μl of Q5 High-Fidelity 2X Master Mix 
(New England Biolabs) using the following PCR program: 98 °C for  
30 s, 22 cycles of 98 °C for 10 s, 68 °C for 30 s, and 72 °C for 30 s, fol-
lowed by 72 °C for 50 s and hold at 12 °C. Libraries were then pooled 
equally by volume, purified by MinElute (Qiagen), and eluted in 35 μl 
double distilled water. Purified libraries were loaded on Blue Pippin 
for size selection of 400–520 nucleotides. Tapestation D1000 was 
used for quality control after size selection. Qubit HS DNA was used to 
quantify the library. The library was sequenced on an Illumina MiSeq 
with a V3 150 cycle kit with the following setting: Read1: 28; Read2: 125; 
I7 Index: 8; I5 Index: 0

Dial-out PCR analysis
The dedup tool from UMI-tools v1.0.056 was used to remove PCR dupli-
cates, with the 'per-cell' flag and the default method. Deduplicated 
reads aligned to cre were then tallied for each cell.

Sanger sequencing of YFP cDNA
YFP was amplified from 10x Genomics whole transcriptome amplifica-
tion with P5 primer and YFP primer (5′- GTGACTGGAGTTCAGACGTG 
TGCTCTTCCGATCTCCTCGTGACCACCTTCGG -3′), followed by Sanger 
Sequencing with P5 and YPF primer. The Sanger sequencing result was 
then compared to the vector sequence used in the generation of the 
mice. The obtained sequence later used for alignment can be found in 
Supplementary Table 3.

scRNA-seq data analysis
Reference genome. To incorporate the fluorescent reporters into 
the reference genome for alignment, we added the sequences of Yfp, 
tdTomato, Gfp and Bfp to the mm10 reference genome provided by 
CellRanger (mm10 version 3.0.0, Ensembl 93). Yfp sequence was ob-
tained by Sanger sequencing as described above. We checked that 
Yfp counts appeared relatively independent of whether Gfp and Bfp 
were in the reference. tdTomato was not positioned close enough to 
the 3′ end of the transcript to be mapped robustly, and Il5 has rela-
tively low expression; hence, we used dial-out experiments with cre, 
as described above, to assess expression in the scRNA-seq libraries. 
Gfp was represented in the reference by the eGFP sequence and bGH 
terminator in the pBigT-IRES-GFP plasmid (https://www.addgene.org/
browse/sequence/229542/), and the Bfp sequence was obtained from 
Gfp by substituting the sequence of BFP (https://www.addgene.org/
browse/sequence_vdb/6363/) for eGFP. We could not confidently map 
reads to Gfp or Bfp, likely due, at least partly, to the large similarity in 
those sequences; hence, Il17a and Il22 mapped transcripts were used 
to quantify transcriptional expression of those genes, without any 
reporter transcripts. We did not use counts from tdTomato, Gfp, or Bfp 
fluorescent proteins in the downstream scRNA-seq analysis.

Initial data processing and quality control. Gene counts were ob-
tained by aligning reads to the modified mm10 genome using the Cell-
Ranger software (v1.3) (10x Genomics), wrapped by scCloud (v0.9.1)57. 
Counts for cre were obtained separately by dial-out as described above. 
We performed quality control (QC) processing steps multiple times, 
initially and again after clustering and removing clusters unlikely to 
be ILCs. The numbers reported represent the final QC iteration, after 
exclusion of non-ILC cell clusters, as described below.

To remove doublets and poor-quality cells, cells were excluded from 
subsequent analysis if they were outliers in their sample of origin in 
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terms of number of genes, number of unique molecular identifiers 
(UMIs), or their joint distribution, retaining 94% (6,059), 96.6% (6,200), 
91.2% (4,272), 96.7% (6,645) and 92.8% (5,051) of cells at time points 
0–4, respectively. The accepted range for number of genes detected 
per cell was 500–3,000 for time points 0 and 1, and 700–3,300 for time 
points 2–4. The accepted range for number of UMIs detected per cell 
was 1,000–10,000 for time points 0 and 1, and 1,500–11,000 for time 
points 2–4. Cells were further excluded if they were outliers across 
remaining cells in all samples in terms of percentage of mitochondrial 
genes (>15%), eliminating another 3.7% of the remaining cells, resulting 
in 27,185 retained high-quality cell profiles.

Normalization. To normalize gene counts, we used the SCTransform 
function from Seurat v3, setting the 'vars.to.regress' parameter to the 
percentage of mitochondrial genes and defaults for other parameters45. 
This function is a wrapper for the variance-stabilizing function vst in the 
sctransform package58, which performs regularized negative binomial 
regression, using cellular sequencing depth as a covariate and pooling 
information across genes to avoid overfitting the generalized linear 
model. The corrected counts returned by this function (the counts 
slot of the SCT assay) were used in place of raw counts in downstream 
processing, except for in topic modeling. Similarly, natural log of (x+1), 
where x is the corrected counts (data slot), was used in place of the 
more typical log transcripts per million for normalized expression 
downstream. Finally, the mean-centred Pearson residuals (scale.data 
slot) were used in place of more typical z-scored expression data in 
downstream computation of the k-nearest-neighbours graph.

Determination of variable genes. Variable gene selection was per-
formed automatically within the call to SCTransform via selection of 
the top 3,000 genes, ranked by residual variance.

Initial dimensionality reduction, clustering and visualization. To 
cluster and remove cells unlikely to be ILCs, we computed a principal 
components analysis on scaled variable genes, as determined above, 
using Seurat’s RunPCA function, and visualized it by computing a UMAP 
using Seurat’s RunUMAP function on the top 30 principal components. 
We also computed the k-nearest neighbour graph on the top 30 princi-
pal components, using Seurat’s FindNeighbors function with default pa-
rameters (that is, k.param = 20), and in turn used Seurat’s FindClusters 
function (algorithm = ‘leiden’) to compute clusters based on the graph.

Removal of non-ILC clusters. On the basis of expression of marker 
genes across clusters, we determined that two very distinct clusters 
were unlikely to be ILCs. Cells from one small, distinct cluster of 109 cells 
had unique, high expression of genes associated with the extracellular 
matrix and collagen, including Sparc, Dcn, Gcn, Bgn, Col3a1 and Col1a2. 
Another, even smaller distinct cluster of eight cells had specific, high 
expression of Lyz2. Cells from these putative non-ILC clusters were 
removed, and the QC and normalization steps were repeated.

Force-directed layout embedding and diffusion maps. We com-
puted a 30-nearest-neighbour graph with scanpy’s pp.neighbours 
function (v1.4.4.post1)59 on the top 20 principal components of the 
Pearson residuals of the scTransformed data, for all cells and variable 
genes. Moreover, 14 diffusion components were calculated using 
scanpy’s diffmap function (visualized in Extended Data Fig. 10a, b). A 
force-directed layout embedding was obtained by scanpy’s draw_graph 
function, which is a wrapper for ForceAtlas2 (v0.3.5)60 (https://github.
com/bhargavchippada/forceatlas2) with initial random state 0 and 
default parameters. FDL1 and FDL2 indicate the two components of 
the embedding in all FDL visualizations.

Topic modelling. Topic modelling results were obtained by fitting an 
LDA model25, also known as a ‘grade-of-membership’ model26,27,61, to 

the raw counts matrix, restricted to cells that passed quality control 
and to non-ubiquitous genes (expressed in ≤97% of cells). The model 
does not use any prior information about gene programs or cell types. 
Fitting of the LDA model was performed with the CountClust Biocon-
ductor package (v1.12.0)27, which is a wrapper for the maptpx package 
(v1.9.2)62. We fit models for a varying number K of topics, ranging from 
K = 4 to K = 22 (with tolerance parameter tol=0.1). The number K = 17 was 
selected as the minimizer of the Bayesian information criterion (BIC) 
(Extended Data Fig. 2c). This choice also struck a good balance between 
capturing coherent signals and avoiding overfitting, although we see 
mild signs of both under- and overfitting the data, which did not impact 
the overall analysis. For example, Topic 7 spans two distinct arms in the 
FDL embedding (Extended Data Fig. 2t), with the association driven by 
relatively few genes, such as Ms4a4b (Extended Data Fig. 2u). There were 
also overlaps between topics in the cloud, such as between topics 9, 10 
and 11 (Extended Data Fig. 3c, e, g). These features could not be jointly 
addressed by selection of K, and might be mitigated only by applying 
topic modelling ad hoc to different subsets of the data separately or by 
employing more complex, computationally demanding hierarchical 
models, such as hierarchical topic models63.

Gene scores were calculated via CountClust’s ExtractTopFea-
tures function, selecting the top 200 genes per cluster, allowing 
sharing of genes between clusters, using the Poisson model for the 
Kullback-Leibler (KL) divergence, and options = ‘min’ (selecting features 
that maximize the minimum KL divergence of topic compared to all 
others). That is, to select the genes representative of topic k, we first 
calculated, for all other topics l and each gene g, the KL divergence 
KLg(k, l) = θk,g log(θk,g /θl,g) + θl,g − θk,g between the topic-gene weights θk,g 
and θl,g (interpreted as Poisson intensities). Then, we ranked genes by 
sorting the minimum among all other clusters of these KL divergences, 
Dg(k) = minl≠k KLg(k, l), in descending order, and picked the top 200 
genes. These minimum KL divergences are also the scores reported 
in Fig. 1 and Extended Data Figs. 2, 3. On the basis of high weights of 
cell-cycle-associated genes, such as Stmn1, Mki67 and Birc5, topic 17 
was identified as a cell-proliferation program (Extended Data Fig. 3), 
and we denote by ‘proliferating cells’ those with a weight for topic 17 
above 0.08. Downstream results are not sensitive to the exact threshold. 
A negative association between Il2ra and the weights for topic 1 was 
determined by calculating Spearman’s ρ with the scipy.stats.spearmanr 
function (v.1.3.2)64, using the topic weights and the log-normalized 
scTransform-corrected expression values for Il2ra as inputs.

Enhanced box plots. The box plots in Extended Data Fig. 3u and 5f are 
obtained by calculating a geometric sequence of quantiles to base 2, 
that is, the 75th, 87.5th, 93.75th, 96.875th and 98.4375th percentiles 
of each visualized distribution, and similarly the 25th, 12.5th, 6.25th, 
3.125th and 1.5625th percentiles. The quantiles are visualized by succes-
sively smaller rectangles, with the height of each rectangle representing 
the quantile. The median is represented by a black line. For the sake of 
clearer presentation, the range is cropped to the 98.5th percentile. 
Significance annotations are based on a two-sided Mann–Whitney 
U-test with continuity correction in both cases. For the box plots in 
Extended Data Fig. 5f, the plots comprise sets of cells on day 3 whose 
weight for topics 2, 3, and 5 are larger than cut-offs of 0.2, 0.2 and 0.175, 
respectively, which were determined by inspection of the FDL visualiza-
tion. We note that the determination of significance was not sensitive 
to this particular choice of cut-offs. The topic 2- and topic 3-high sets 
intersected in 8 cells that were removed from each to render all three 
of the above sets disjoint.

Optimal transport
Optimal transport (OT) plans between time points were calculated with 
the Waddington-OT package (v1.0.8)39 on the basis of the scTransform 
Pearson residuals of the variable genes. Because Waddington-OT can be 
sensitive to the proliferation rates of cells, to simplify the analysis, and 
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because no time point was enriched for proliferating cells, we excluded 
proliferating cells in this analysis. Similarly, owing to the absence of 
cells with strong markers for cell growth or cell death, we chose unbal-
ancedness parameters as follows: lambda1 = 10, lambda2 = 50, and 
growth_iters = 1. The remaining parameters were set to: epsilon = 0.05 
and local_pca = 10. The resulting transport maps were validated by 
interpolation between all consecutive triples of time points as in ref. 39 
with Waddington-OT’s compute_validation_summary function, using 
default parameters (Extended Data Fig. 10c). The Wasserstein-2 dis-
tances between the actual distribution of cells at the midpoints of 
the triples and an OT-based interpolation at the same time point were 
consistently smaller than the ones between the actual distribution and 
a random interpolation based on the previous and next time points.

To obtain putative precursors to cells expressing the ILC3-like topic 
(topic 3), first, cells with a topic weight of at least 0.2 for topic 3 at day 4 
were chosen as end points, and the empirical probability distribution 
over these cells was pulled back with the OT plans. Then, the ancestor 
probability was plotted separately for each previous day (Fig. 2a).

Directed pseudotime
To calculate pseudotime trajectories between two sets of cells, we 
broadly followed the URD methodology40, simulating directed random 
walks between two sets of cells at a time. First, we selected starting and 
end point sets, striking a compromise between the putative predeces-
sors predicted by Waddington-OT, the main axes of variation in the 
data, and biological and immunological interpretability of the resulting 
sets. The main axes of variation and biological interest were identified 
as quiescent-like cells (as captured by both topic 1 and DC4), ILC2-like 
cells (topic 2, DC3), ILC3-like cells (topic 3, DC2), and the cloud (itself 
including variation).

In detail, cell sets were selected as follows: for each main cell state 
of interest except the cloud (that is, expressing quiescent-like, ILC2 or 
ILC3-like topics), a diffusion component was identified whose extreme 
values are indicative of that cell state. 20 cells with an extremal diffusion 
component from either day 0 or day 4 were selected as start and end 
points according to the time-directionality of the desired path (Sup-
plementary Table 4, Extended Data Fig. 10a, b, f). For example, for the 
quiescent-to-ILC3-like path (Fig. 2b), 20 day-0 cells maximizing DC4 
were selected for the start point and 20 day-4 cells minimizing DC2 for 
the end point. For the start set in the cloud (Fig. 2b, cloud-to-ILC3-like), 
cells were chosen that minimize DC2, but excluding cells with a topic 
weight of >0.2 for topics 1, 2 or 3, to pick those that most resemble 
induced ILC3-like cells but do not fall into any of the other considered 
sets of interest (Extended Data Fig. 10e). In all cases except for the 
cloud, a selection procedure based on topics instead of DCs led to 
similar results, but was slightly worse in capturing extremal cells in 
the FDL visualization. In the case of the cloud, the selection based on 
DC2 was more stable in restricting the choice to a subregion of the 
FDL visualization than a comparable selection by the weights for topic 
3. For these two reasons, the selection was performed based on DCs 
instead of topics. Although the Waddington-OT results (Fig. 2a) suggest 
certain sub-regions of the cloud might have as high a probability for 
being predecessor cells as the chosen starting sets, such as the cells 
at the top right corner in the FDL visualization (Fig. 2a; day 0 and 1) 
with high weights for topics 9 and 10 (Extended Data Fig. 3c, e), we did 
not specifically use cells in this sub-region as a starting point. Genes 
differentially expressed by cells in this region, compared to all cells 
(by either CountClust or a more fine-grained differential expression 
analysis restricted to cells in the cloud using MAST65), such as S100a11, 
Lgals1 and Vim (Extended Data Fig. 10d), are generally related to the 
regulation of cell cycle progression and cell migration. Moreover, this 
sub-region is already well-captured by the cloud starting position we 
selected (Extended Data Fig. 10e).

Second, an overall distance measure (initial pseudotime) from the 
set of end point cells was obtained by averaging (over all endpoint cells) 

the pseudotime output of scanpy’s dpt function with that cell set as the 
root. This deviates from the URD approach of a stochastic breadth-first 
search and was chosen because of its simpler implementation at no 
obvious disadvantage in terms of pseudotime estimation.

Third, a weighted transition matrix was constructed by biasing the 
edge weights of the 30-nearest-neighbours graph, described above, 
towards lower distances to the end points. This was achieved by mul-
tiplying the neighbourhood entries for each cell with a sliding logistic 
function, as in URD40, down-weighting transitions to cells with larger 
initial pseudotime than the cell under consideration. The shape param-
eters of the logistic curve were calculated as in URD with optimal.cells.
forward = 10 and optimal.cells.backward = 20. Finally, the matrix was 
re-normalized to correspond to a Markov random walk.

Fourth, a number of random walks was simulated according to the 
weighted transition matrix, starting at a cell chosen uniformly at ran-
dom in the start set, and terminating once a cell in the end set was hit. 
The positions of cells in each walk were normalized to lie between 0 
and 1 and then averaged over all runs that contained a specific cell to 
obtain a directed pseudotime estimate for that cell. The number of 
random walks was chosen to ensure that the relative change in the 
Euclidean norm between the position estimates after 1,000 simula-
tions was less than 0.05.

Fifth, because some cells are never visited by these walks and some 
are visited very rarely, cells were considered to be part of a specific 
trajectory only if they occurred in sufficiently many walks. Specifically, 
cells were filtered by an overall quantile cut-off, discarding all cells 
with in-walk frequencies below a threshold, as well as by performing 
a non-parametric quantile regression of in-walk frequency occurrence 
against estimated path position using cubic regression splines with 20 
knots (Extended Data Fig. 10g, R packages splines, v3.6.1 and quantreg, 
v5.51), discarding cells below a second quantile cut-off if their positions 
were between 0.01 and 0.99. The quantile cut-offs for each path were 
chosen so that enough cells around both the start and end points were 
selected while simultaneously avoiding selection of too large a part of 
the neighbourhood graph. The resulting number of cells in each path 
are reported in Supplementary Table 3.

Finally, pseudotime visualizations in the FDL embedding (Fig. 2b) 
were obtained by selecting all cells exceeding the quantile cut-offs 
and colouring selected cells according to their mean position esti-
mate, with the remaining cells shown in grey. Arrows were manually 
added to highlight the directionality of the trajectory. Visualizations 
by day in the FDL embedding (Fig. 2c, e, Extended Data Fig. 7a, c) show 
the same cells, colouring all selected cells for each day, with remain-
ing cells again shown in grey. The heat maps (Fig. 2d, f, Extended Data 
Fig. 7b, d) were generated by sorting the selected cells according to 
their directed pseudotime estimate and reporting normalized gene 
expression. Genes for each path were selected on the basis of (1) how 
well their expression levels were correlated with pseudotime, (2) the 
fact that they were differentially expressed for the start or the end 
point, and (3) biological interpretability.

Differentially expressed genes near trajectory endpoints
To investigate phenotypic differences between cells near the ILC3-like 
endpoints of the trajectories found by directed diffusion, we performed 
differential expression analysis on subsets constructed as follows. We 
defined a base set of ILC3-like cells as those cells with a topic 3 weight 
>0.2. Next, we compared the cells within this base set that were selected 
for each of the three trajectories (originating from cloud, ILC2s, and 
quiescent-like cells, respectively) with their complement in the base 
set (that is, all other cells in the base set), yielding three pair-wise com-
parisons. For example, cells selected for the quiescent-to-ILC3-like 
trajectory with a topic 3 weight >0.2 were compared to any other 
cells with a topic 3 weight >0.2. Differential expression analysis was 
performed with a two-sided Wilcoxon rank-sum test using scanpy’s 
“rank_genes_groups” function. Subsequently, genes were retained if 



the fraction of expressing cells within the considered group was ≥0.2, 
the fraction of expressing cells in the other group was ≤0.95, and the 
fold-change between groups was at least 1.5. We considered genes with 
a Bonferroni-adjusted P value of less than 0.05 significant and report 
the results in Supplementary Table 5 for all genes and in Extended Data 
Fig. 7e, g for select genes, along with zoomed in versions (Extended Data 
Fig. 7f, h), where the plotted area is restricted to the visible subsection 
of the FDL plot around the cells with highest topic 3 weight, capturing 
more than 90% of the cells with topic 3 weight >0.2.

Computation of doubling time
To estimate the doubling time required for ILC3-like cells to emerge 
as a result only of expansion, we made the assumption that the total 
number of ILCs in the ear skin is non-decreasing between day 0 and 
day 1. Then, we calculated an upper bound to the required doubling 
time in hours as 24/log2(fraction of ILC3-like cells at day 1 divided by 
the fraction of ILC3-like cells at day 0), where cells were classified as 
ILC3-like by a topic 3 cut-off of >0.2.

Data from previous single-cell RNA-seq studies
We obtained scRNA-seq data of human T cells (Extended Data Fig. 5b, 
c) from lung, lymph nodes, bone marrow and blood from the Gene 
Expression Omnibus (GEO), accession GSE12603029. UMAP coordinates 
and topic modelling data were provided in the source data file associ-
ated with ref. 29. Data from each individual sample in that study were 
merged and only those cells with provided UMAP coordinates were 
retained without further filtering. Transcript counts were normalized 
by cell and then transformed to natural log of (1 + 10,000 × UMI count). 
Significant genes for two resting topics, CD4 naive/central memory and 
CD4 CD8 resting, were obtained from the source data file for Fig. 4 of 
ref. 29. These were subsequently used to calculate the signature scores 
plotted in Extended Data Fig. 5b with scanpy’s score_genes function, 
using default arguments. We then selected genes to visualize from our 
LDA results (Fig. 1f), determined their human orthologues with the 
Ensembl project’s Biomart database (Ensembl v.101)66, and plotted 
their expression (Extended Data Fig. 5c).

For the comparison to lung-resident ILCs (Extended Data Fig. 6a), pro-
cessed scRNA-seq data were obtained from a previous study35 (acces-
sion GSE102299) without any change to processing, using the same 
expression values as previously reported. In particular, log-transformed 
normalized gene expression levels, referred to as log TPX, were cal-
culated by calling Seurat’s LogNormalize function with the scale set 
to reflect the expected number of UMIs in each condition. That is, for 
cells in condition c and sample i, the scale.factor argument was set to 
10,000 × (wc,i/meanj(wPBS,j)), where wc,i is the mean number of UMIs per 
cell in condition c and sample i, and meanj denotes the mean over all 
PBS control samples j.

scATAC-seq
Skin ILCs were isolated from ears of wild-type naive mice (day 0) 
and IL-23 treated mice (day 4) with n  =  10 mice per group. Total 
skin ILCs were sorted (approximately 60,000 cells per group) as 
CD45.2+CD90.2+Lin−TCRγ−CD3ε−. After sorting, cells were immediately 
washed and resuspended in 1 ml CryoStore CS10 freezing media (StemCell 
Technologies) followed by cryopreservation at −80 °C with cooling rate 
of 1 °C min−1 using Mr Frosty (Nalgene). For scATAC-seq, cells were thawed, 
washed and lysed for 3 min on ice according to the low input protocol 
recommendations by 10x Genomics (CG000169-Rev C). For single-cell 
library preparation, the 10x Genomics Chromium Controller and the 10x 
Genomics Chromium Single Cell ATAC Library & Gel Bead Kit (1000111) 
were used according to the manufacturer’s instructions (CG000168-Rev 
B). Libraries were sequenced on an Illumina Nextseq 550, using a Nextseq 
High Output kit and sequenced to a depth of around 130 million reads per 
sample (approximately 5,000–6,000 cells per sample) with paired-end 
reads according to the recommendations by 10x Genomics.

scATAC-seq data analysis
Initial data processing and QC. Fastq files were demultiplexed from 
the sequencer base call files using CellRanger ATAC mkfastq (v1.1.0) 
from 10x Genomics. Peak-barcode matrices were obtained by aligning 
reads to mm10 (cellranger-atac reference v1.1.0, mm10) using Cell-
Ranger ATAC count. Demultiplexing, alignment and peak calling were 
performed using cellranger_workflow in Cumulus (v0.10.0)57 in Terra 
(https://app.terra.bio/), a wrapper of CellRanger. Filtering for bar-
code multiplets was performed with the scATAC Barcode Multiplet 
cleanup tool (v_1.0) from 10x Genomics. Filtering was performed on 
each channel separately, as recommended. Peak-barcode matrices 
from two channels (untreated and IL-23 induced) were then pooled 
using CellRanger ATAC aggr, normalizing input libraries per depth. All 
analyses described below were performed on the aggregated dataset.

The depth-normalized, aggregated, filtered dataset was analysed 
with Signac67 (v0.1.6; https://github.com/timoast/signac), a Seurat45 
extension for the analysis of scATAC-seq data, run with random number 
generator seed set as 1234. Cells that appeared as outliers in QC metrics 
(peak_region_fragments ≤ 2,500 or peak_region_fragments ≥ 60,000 
or blacklist_ratio ≥ 0.02 or nucleosome_signal ≥ 5 or pct_reads_in_
peaks ≤ 35 or TSS.enrichment ≤ 2), or non-ILC cells (appearing as sepa-
rate clusters, expressing fibroblast and skin cell markers like collagen 
or keratin genes) were excluded from further analysis. After initial 
processing and filtering, our dataset included 4,281 ILCs from naive 
mice and 4,153 ILCs from IL-23 treated mice.

Normalization and dimensionality reduction. The aggregated data-
set was processed with latent semantic indexing68, that is, datasets 
were normalized using term frequency-inverse document frequency 
(TF-IDF), then singular value decomposition (SVD), run on all binary 
features, was used to embed cells in low-dimensional space. UMAP 
was then applied for visualization, using the first 30 dimensions of 
the SVD space.

Gene-activity matrix and differential motif-activity analysis. A 
gene-activity matrix was calculated as the chromatin accessibility as-
sociated with each gene (extended to include 2 kb upstream of the 
transcription start site) as described in the vignette ‘Analyzing adult 
mouse brain scATAC-seq’ (version: 12 November 2019; https://satijalab. 
org/signac/articles/mouse_brain_vignette.html). Motif-activity analy-
sis was performed with Signac’s wrapper of ChromVAR69, as described 
in the vignette ‘Motif analysis with Signac’ (https://satijalab.org/ 
signac/articles/motif_vignette.html), using a combined motif-position 
frequency matrix including JASPAR201870 (http://jaspar.genereg.
net/) motif-position frequency matrices for from both human (spe-
cies = 9606) and mouse (species = 10090) transcription factors. Fig-
ure 3c and Extended Data Fig. 8b display selected per-cell motif activ-
ity scores resulting from ChromVAR, with the associated Jaspar IDs. 
Gene-activity and motif-activity scores were visualized with Signac’s 
FeaturePlot, with a maximum cut-off value set at the 99th quantile 
(max.cutoff = q99).

Statistical analysis
No statistical methods were used to predetermine sample size. The 
experiments were not randomized. The investigators were not blinded 
to allocation during experiments and outcome assessment. Statistical 
analysis of non-single-cell experiments was performed using GraphPad 
Prism 9. For all bar graphs, mean ± s.d. are shown. P values <0.05 were 
considered significant; FlowJo 9.0 (or more recent versions) (Treestar) 
was used to analyse flow cytometry data. All sample sizes and statistical 
tests used are detailed in the figure legends. In addition to unpaired 
two-tailed Welch t-test, multiple comparisons were made with repeated 
measures two-way ANOVA with Geisser–Greenhouse correction, using 
Bonferroni adjustment for multiple comparisons.

https://app.terra.bio/
https://github.com/timoast/signac
https://satijalab.org/signac/articles/mouse_brain_vignette.html
https://satijalab.org/signac/articles/mouse_brain_vignette.html
http://jaspar.genereg.net/
http://jaspar.genereg.net/
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Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
All genomics data produced for this study have been deposited in the 
NCBI Gene Expression Omnibus (GEO) under accession GSE149622. 
Our browsable, processed datasets are available at https://singlecell.
broadinstitute.org/single_cell/study/SCP781/skin-ilc-psoriasis. We 
used the following publicly available resources, as described in Meth-
ods: the mm10 mouse genome assembly from 10x (v3.0.0, Ensembl 
93; https://support.10xgenomics.com/single-cell-gene-expression/
software/release-notes/build) for scRNA-seq read alignment; the 
mm10 genome assembly from 10x (v1.1.0; https://cf.10xgenomics.
com/supp/cell-atac/refdata-cellranger-atac-mm10-1.1.0.tar.gz) for 
scATAC-seq read alignment; the AddGene plasmid repository for the 
sequences of Gfp (sequence #229542; https://www.addgene.org/
browse/sequence/229542/), Bfp (vector sequence #6363; https://
www.addgene.org/browse/sequence_vdb/6363/); scRNA-seq data 
in the GEO for human T cells (accession GSE126030) and mouse lung 
ILCs (GSE102299); and the Biomart database (from Ensembl version 
101; http://aug2020.archive.ensembl.org/biomart/martview/) for 
the determination of human–mouse orthologues. Source data are 
provided with this paper.

Code availability
Code used in this study is available at Github: https://github.com/
klarman-cell-observatory/skin-ILCs.
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Extended Data Fig. 1 | Characterization of skin immune cells upon IL-23 
induction. a, Increase in ear skin thickness is significantly greater in response 
to IL-23 treatment than PBS vehicle. Increase in ear thickness (mean ± s.d.) 
following treatment with IL-23 (red, n = 10 mice) or PBS vehicle (black, n = 10 
mice). Data from 2 independent experiments; repeated measures two-way 
ANOVA with Geisser–Greenhouse correction, Bonferroni adjusted.  
b, c, Immune cell composition and skin phenotype in different mouse 
genotypes (corresponding to the experiment in Fig. 1b). b, Left three panels: 
number of cells producing IL-22 or IL-17 among ILCs (black dots, bars), αβ T cells 
(blue squares, bars) and γδ T cells (pink triangles, bars) in wild-type, Tcrd−/− 
(lacking γδ T cells), and Rag1−/− (lacking all T cells and B cells) mice. Right two 
panels: number of total ILCs or total CD45+ cells in wild-type, Tcrd−/−, Rag1−/−  
and Rag2−/−Il2rg−/− (lacking T cells, B cells, and ILCs) mice. n = 5 WT, n = 3 
Rag2−/−Il2rg−/−, n = 2 Tcrd−/−, n = 2 Rag1−/− mice; statistics given for WT, two-way 
ANOVA, Bonferroni adjustment. Experiments were repeated with similar 
results. c, Haematoxylin and eosin (H&E) staining of ear sections from 
wild-type, Tcrd−/−, Rag1−/− and Rag2−/−Il2rg−/− mice. Arrows indicate acanthosis. 
Representative micrographs of two independent experiments. d, Increase in 
skin thickness (mean ± s.d.) over time in Rag2−/−Il2rg−/− mice with (blue) or 
without (black) intravenously transferred ILCs. n = 4 mice for each group, 
pooled from 3 experiments; repeated measures two-way ANOVA with Geisser–
Greenhouse correction, Bonferroni adjusted. e, IL-23-induced inflammation is 
dependent on Rorc. Increase in ear thickness (mean ± s.d.) following treatment 
with IL-23 (blue, n = 9 mice) or PBS vehicle (black, n = 8 mice) in Rorc−/− mice. Data 

pooled from 2 experiments; repeated measures two-way ANOVA with Geisser–
Greenhouse correction, Bonferroni adjusted. f, FTY720 blocks white blood cell 
circulation. Total circulatory white blood cell (WBC) numbers (mean ± s.d.) in 
untreated (non-Tx) and FTY720-treated (FTY720-Tx) wild-type (n = 3 mice for 
each group) and Rag1−/− mice (n = 2 mice non-Tx, n = 4 mice FTY720-Tx). 
Unpaired two-tailed Welch t-test for wild-type mice. g, IL-23-dependent 
increase in ear skin thickness does not require circulating cells. Increase in skin 
thickness (mean ± s.d.) over time following IL-23 treatment in FTY720-treated 
(red) and untreated (black, non-Tx) Rag1−/− mice (Methods). n = 4 Rag1−/− non-Tx, 
n = 8 Rag1−/− FTY720-Tx mice; data from 2 independent experiments; difference 
not significant; repeated measures two-way ANOVA with Geisser–Greenhouse 
correction, Bonferroni adjusted. h, A secondary challenge with IL-23 increases 
susceptibility. Increase in skin thickness (mean ± s.d.) owing to primary (white) 
or secondary (blue) challenges by either IL-23 (n = 14 mice) or saline control 
(PBS) (n = 5 mice). Data from 2 independent experiments; repeated measures 
two-way ANOVA, Bonferroni adjusted. i, FTY720 treatment does not impact 
increased susceptibility to a secondary IL-23 challenge. Increase in skin 
thickness (mean ± s.d.) over time in mice treated initially with either IL-23 
(black) or IL-23 and FTY720 (red) and subsequently with IL-23 (Methods). 
Bottom bars (grey): period of primary (left) and secondary (right) challenges. 
n = 6 IL-23 only, n = 6 IL-23 and FTY720. j, Gating strategy on CD45+ cells for 
sorting total skin ILCs for scRNA-seq and IL-5 fate mapping experiments. ILCs 
are defined as CD90.2+ and Lin− (CD3e, CD4, CD8, TCRβ, CD11b, CD11c, CD19, 
B220, NK1.1, Ter119, Gr1, FcεRIa), followed by exclusion of TCRγδ+ cells.
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | Topic modelling of scRNA-seq time course.  
a, Localized expression of ILC-associated genes. FDL embedding (as in Fig. 1e) 
with cell profiles (dots), coloured by normalized expression (log-transformed 
scTransform-corrected counts) of selected genes. b, LDA topic modelling 
schematic in the context of single-cell gene expression. Topics (top) consist of 
genes (middle), weighted (bar height, colour gradient) according to their 
importance in the topic. Cell transcription profiles (bottom rows) are 
characterized by the contribution (bar length) of each topic (colour); a cell can 
have multiple topics. c, In our analysis, K = 17 is optimal according to the 
Bayesian information criterion (BIC). Plot of BIC for selected choices for the 
number K of topics. d–f, Additional plots for topics 1–3, as in Fig. 1f–k. d, For 
‘quiescent-like’ topic 1, plot (left) of the empirical cumulative distribution 

functions (eCDF) of topic weights, grouped and coloured by time point and 
cropped to the overall 95th percentile of the topic weights, and FDL plots 
(right) of cells, coloured by normalized expression (colour bar; low, grey; high, 
maroon) of topic-associated genes. Analogous plots are shown for ‘ILC2’ topic 
2 (e) and ‘ILC3-like’ topic 3 (f). g–v, LDA model results for topics 4–7. For  
‘Il2-high’ topic 4, bar plot of top scoring genes, ranked by a score (logarithmic 
scale) of how well the gene distinguishes this topic from other topics (g); FDL 
plot (as in a) of cells, coloured by topic weight (colour bar; low, grey; high, teal) 
(h) or by normalized expression (colour bar; low, grey; high, maroon) of topic-
associated genes (i); eCDF plots of topic weights (as in d) ( j). Analogous plots 
shown for topics 5 (k–n), 6 (o–r) and 7 (s–v).
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Extended Data Fig. 3 | More topic modelling results, including topics 8–17 
and changes in topic score distributions across time points. a–t, LDA model 
results for topics 8–17 (Methods). For topic 8: FDL embedding (as in Fig. 1e) of 
scRNA-seq profiles (dots), coloured by topic weight (colour bar; low, grey; high, 
teal) (a); bar plot of top scoring genes ( y axis), ranked by a score (x axis, 
logarithmic scale) that represents how well the gene distinguishes this topic 
from other topics (b). Analogous plots shown for topics 9–17 (c–t).  
u, Distributions of topic weights at each time point. For each topic, topic 

weights at each time point (colour) were plotted as enhanced box plots, 
indicating median (black bar) and geometric progression of quantiles 
(progressively decreasing box widths for 75th, 87.5th, 93.75th, 96.875th and 
98.4375th percentiles, and analogously for 25th, 12.5th, 6.25th, 3.125th and 
1.5625th percentiles), cropped at the 98.4375th percentile. Bonferroni- 
adjusted P values, determined by a two-sided Mann–Whitney U-test with 
continuity correction, or no significance (NS, P > 1%). n = 5,290 for day 0, 
n = 6,051 for day 1, n = 6,525 for day 3.



Extended Data Fig. 4 | Dynamic changes in topic weights highlight rapid 
induction of ILC3-like (topic-3-high) cells. FDL embedding (as in Fig. 1e) of 
scRNA-seq profiles (dots), for each day (columns), with profiles coloured by 
topic weight (colour bar; low, yellow; high, teal; cells from other days shown in 
grey), for topics 1–8 (rows) (out of 17 topics; Methods). To highlight the 

difference between cells with low topic weight in a specific day compared to 
cells from other days, this colour legend differs from that used in Fig. 1g, i, k, 
Extended Data Figs. 2h, l, p, t, 3a, c, e, g, i, k, m, o, q, s, in the very low-weight 
region (here yellow instead of grey).
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Expression of other topic-related genes, comparison 
of mouse skin ILCs to resting human T cells, and expression patterns of 
CGRP-signalling genes. a, FDL embedding (as in Fig. 1e) of scRNA-seq profiles 
(dots) coloured by normalized expression (colour bar; low, grey; high, maroon) 
of selected genes (panels) associated with topic 1 (Klf4, Jun and Id3), topics 2 
and 3 (Csf2), topic 3 (Lgals3 and Rorc) and topic 4 (Il4). b, c, Genes associated 
with quiescent-like topic 1 were also observed in resting human T cells. UMAP 
embedding of scRNA-seq profiles (dots) of human T cells29, coloured by scores 
(colour bar; low, yellow; mid, teal; high, purple) for gene signatures associated 
with CD4 or CD8 resting, naive and central memory T cells (b), or by log(TP10k) 
(log of (1 + transcript counts scaled to 10,000 per cell)) gene expression (colour 
bar; low, grey; high, maroon) for topic-1-associated genes (c) (Methods).  
d–f, CGRP-signalling genes have distinct patterns of differential expression in 
cells enriched in topics 2, 3 or 5. FDL embedding (as in Fig. 1e) of cells from all 

time points (d) or from only day 3 (e), coloured by normalized expression 
(colour bar; low, grey; high, maroon) of CGRP-associated genes (panel labels). 
Ramp1 and Calcrl form a receptor for CGRP, encoded by Calca (which also 
encodes calcitonin or katacalcin, depending on splicing and processing), 
whereas Ramp3 and Calcrl form a receptor for adrenomedullin (Adm), and a 
weak-affinity receptor for CGRP. f, Normalized expression of each gene 
(panels) on day 3 is shown for non-overlapping subsets of cells with relatively 
high weights for ‘ILC2’ topic 2, ‘ILC3-like’ topic 3, or ‘Calca-high’ topic 5 
(Methods). Enhanced box plots indicate geometric progression of quantiles 
(that is, 50th, 75th and 87.5th percentiles, as in Extended Data Fig. 3u), cropped 
at the 98.5th percentile. Bonferroni-adjusted P values between two 
distributions were determined by a two-sided Mann–Whitney U-test with 
continuity correction. n = 632 for ILC2s, n = 224 for ILC3-like cells, n = 38 for 
topic-5-high cells.
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | Additional analysis of skin ILC trajectories and of 
differential gene expression in ILC3-like cells originating along different 
trajectories. a–d, Additional visualizations for trajectories identified by 
directed diffusion (as in Fig. 2b). For the cloud-to-ILC3-like trajectory: FDL 
embedding (as in Fig. 2a) with cells (dots) in the trajectory highlighted in blue 
for each day (panel title, cells not inferred to be in the trajectory or from other 
days in grey) (a), and heatmap of co-expression (top) and normalized 
expression (bottom; colour bar: low, grey; high, burgundy) of trajectory-
associated genes (rows) in cells (columns) ordered by pseudotime (colour bar, 
top) (b). Analogous plots are shown for the potentially bidirectional ILC2-to-

quiescent-like trajectory (c, d). e–h, Distinct trajectories leading to ILC3-like 
cells are characterized by differentially expressed genes (Methods). FDL 
embedding (as in Fig. 1e) including all cells (e), and cropped to focus on ILC3-
like cells (f), shows cell profiles (dots), coloured by normalized expression 
(colour bar: low, grey; high, maroon) of genes (panels) more highly expressed 
by ILC3-like cells in the ILC2-to-ILC3-like trajectory (as in Fig. 2b, e–f) than by 
other ILC3-like cells, including Bcl2a1b, which is specifically low in quiescent-
like cells, compared to other ILCs. Analogous plots are shown for genes with 
higher expression in the quiescent-to-ILC3-like trajectory, compared to other 
ILC3-like cells (g, h). P values in Supplementary Table 4.
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Extended Data Fig. 7 | Skin ILC similarities to and differences from mouse 
bone marrow and lung ILC precursors. a, ILC-precursor markers have 
distinctive expression patterns in skin ILCs. Although IL-18Rα+ST2– ILC2s were 
identified as precursors in lung17,18, most skin ILCs express Il18r1 but not 
Il1rl1 (as in Fig. 1i), and Klf2 is highest in quiescent-like cells (as in Fig. 1g). FDL 
embedding (as in Fig. 1e) shows cell profiles (dots) from all time points, 
coloured by normalized expression (log-transformed scTransform-corrected 
counts, Methods; colour bar; low, grey; high, maroon) of precursor-associated 
genes, including those that are broadly expressed in skin ILCs (top row, Il18r1, 
Tcf7, Tox and Itgb7), highly expressed in topic-2-high (‘ILC2’) cells (middle row, 
Itga4 and Kit), lowly expressed in topic-1-high (‘quiescent-like’) cells (middle 
row, negative marker Il2ra, which encodes CD25), or highly expressed in topic-

3-high (‘ILC3-like’) cells (bottom row, Zbtb16, Pdcd1, Tox2, Selenop and Gimap5). 
Note that integrin proteins encoded by Itgb7 and Itga4 form the heterodimeric 
integrin receptor α4β7. b, Klf2 expression is associated with high Il18r1 and low 
Il1rl1 expression in lung ILCs35, both in steady state and in induced 
‘inflammatory ILC2s’7. t-distributed stochastic neighbour embedding (tSNE) of 
lung-resident ILCs (dots), coloured by experimental condition (top row: PBS 
control, dark grey; orange, IL-25 stimulation; blue, IL-33 stimulation; light grey, 
cells from other conditions), and by logTPX (Methods) normalized expression 
(bottom row: colour bar: low, grey; high, red) of genes used to delineate lung 
precursors17 (Il18r1 and Il1rl1), ‘quiescent-like’ topic 1-associated Klf2, 
ILC3-required transcription factor Rorc, and IL-25-induced ‘inflammatory-ILC2’ 
marker Klrg1.



Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Potential for skin ILCs to transition to ILC3-like 
states is highlighted by chromatin accessibility and in vitro stimulation.  
a–c, Single-cell ATAC-seq profiles reveal accessible chromatin at ILC2-, ILC3- 
and quiescence-associated loci (Methods). a, Gating strategy on CD45+ cells 
used to sort total ILCs for scATAC-seq. ILCs are defined as CD90.2+ and Lin− 
(CD4, CD8, TCRβ, CD11b, CD11c, CD19, B220, NK1.1, Ter119, Gr1, FcεRIa), 
followed by additional exclusion of CD3e+ and TCRγδ+ cells. b, UMAP 
embedding shows scATAC-seq profiles (dots) from untreated (top) or IL-23-
induced (bottom) mice, coloured by chromatin accessibility (colour bar; low, 
grey; high, violet) at the promoter and gene loci of ILC2 genes (Il13 and Il1rl1) 
and ILC3 genes (Il22 and Il17a). c, UMAP embedding (as in b) shows profiles 
from untreated (top) or IL-23–induced (bottom) mice, coloured by motif 
activity score (colour bar: low, blue; high, red; Methods) for the ILC-associated 
transcription factors GATA3 (JASPAR motif code: MA0037.1, required for ILC2), 
BATF–JUN (MA0462.1, required for ILC3), FOS–JUN (ΜΑ0099.2, associated 
with ‘quiescent-like’ topic 1), STAT3 (MA0144.2, TH17-reponse regulator), and 
precursor-associated TCF7 (MA0769.1,). d, Protein measurements validate 
reduced post-induction production of Tsc22d3 (associated with ‘quiescent-like’ 
topic 1, encoding the transcription factor GILZ). Left, distributions of protein 
levels, measured by flow cytometry following intracellular staining of GILZ in 
skin ILCs from mice treated with IL-23 (top 4 tracks, red), compared with PBS 
(lower 4 tracks, blue) and fluorescence minus one (FMO) control  
(bottom track, clear). n = 4 mice for both groups, representative data from  
2 experiments. Right, proportion of Gilz+ cells (average values of two 
independent experiments) in control and IL-23-treated mice. e–h, In vitro 
validation of ILC2 and ILC3-like potential. e, Cultured skin ILCs from untreated 
mice express type 2- (Gata3, Il13 and Areg) and type 3- (Il22 and Il17f ) associated 

genes (panels), when appropriately stimulated. Relative expression was 
measured by rtPCR on total cDNA extracted from ILCs cultured for 5 days in the 
presence of IL-2 and ILC2-inducing cytokines (IL-25 and IL-33) or ILC3-inducing 
cytokines (IL-1β, IL-23 and TGFβ). Two biological replicates pooled for RNA 
extraction and rtPCR, n = 1 for each gene. f, Numbers (top left) of KLF2GFP+ or 
KLF2GFP− skin ILCs cultured in control or ILC2-inducing conditions (IL-25 and  
IL-33), and percentages of these cells producing IL-5, IL-17 or both IL-5 and IL-17, 
based on intracellular staining after 2.5 h of PMA and ionomycin stimulation 
(Methods). Data are pooled from 3 independent experiments (n = 4 wells 
control and GFP− ILC2 induced, n = 5 GFP+ induced; unpaired two-tailed t-test). 
g, FACS plots showing the sorting strategy for the isolation of IL-5-producing 
(tdTomato+) skin ILC2s from Il5cre/tdTomato (Red5) mice (top row) and analysis of 
the production of KLRG-1, IL-17A and IL-5 in tdTomato+ skin ILCs (remaining 
panels), cultured in control or ILC3-inducing conditions (IL-1β, IL-23, IL-18 and 
TGFβ), based on intracellular staining after 2.5 h of PMA and ionomycin 
stimulation (Methods). The lack of cells producing both KLRG-1 and IL-17A 
suggests that ‘inflammatory ILC2s’ do not underlie an ILC2-to-ILC3-like 
transition. h, Numbers (top) of IL-5tdTomato+ skin ILCs cultured in control or ILC3-
inducing conditions (as in g), and percentages (middle row) and numbers 
(bottom row) of these cells producing IL-5, IL-17 or both, based on intracellular 
staining after 2.5 h of PMA and ionomycin stimulation (Methods). Data are 
pooled from three independent experiments; n = 6 control, n = 19 treated wells; 
error bars are mean ± s.d.; unpaired, two-tailed t-test. ILCs from KLF2-GFPtg/tg 
reporter and Red5 reporter for in vitro cultures were sorted as live CD45+ 
IL-7Rα+Lin− (CD3ε, CD5, CD11b, CD11c, CD19, B220, NK1.1, Ter119, Gr1, FcεRIa, 
TCRβ, TCRγ) GFP+ or GFP− for KLF2 expression, or CD103+ for IL-5 expression in 
Red5 mice.
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Extended Data Fig. 9 | Reporter mouse systems confirm ILC2-to-ILC3-like 
transition of committed IL-5+ ILC2s, and mixed ILC2–ILC3 state. a, exIL-5 
cells that transdifferentiated to produce IL-22 and IL-17A no longer produce IL-5. 
FACS analysis indicates joint expression of the IL-5 fate reporter YFP and IL-22-
BFP (left two graphs) or IL-17A-GFP (middle two graphs). Additionally, not all IL-
5Cre/tdTomato+ cells recombine efficiently to be YFP+ cells (right two graphs), which 
suggests a greater actual number of exIL-5 cells. b, Alternative psoriasis model 
(imiquimod) also drove an increase in IL-17A-producing cells, including in exIL-5 
cells, but induced less IL-22 production. Number of cells with the indicated 
reporter configuration in untreated mice (red squares) and mice topically 
treated with imiquimod over 10 days (blue circles). Data from 2 independent 
experiments; mean ± s.d.; n = 6 untreated, n = 10 imiquimod-treated mice.  
c, Expression (rtPCR) of genes (panels) in skin ILCs with (RFP+) and without 
(RFP–) recorded IL-13 fate mapping (Methods) from PBS- and IL-23-treated 
Il13YetCre/+R26R Ai14RFP/+ mice. n = 3 biological replicas for each group; two-way 
ANOVA, Bonferroni adjusted. d, Gating strategy on CD45+ cells for experiment 
in e–g. ILCs are defined as CD90.2+ and Lin− (CD4, CD8, TCRβ, CD11b, CD11c, 
CD19, B220, NK1.1, Ter119, Gr1, FcεRIa), followed by additional exclusion of 
CD3e+ and TCRγδ+ cells. e–h, IL-23 treatment induces cells producing both IL-13 
and IL-22 or both IL-13 and IL-17A. e, FACS plots show production of IL-13, IL-22 

(left), and IL-17A (right) after IL-23 induction in wild-type (top, n = 5), Rag1−/− 
(middle, n = 2) and Tcrd−/− (bottom, n = 2) mice, measured by intracellular 
cytokine staining of skin ILCs stimulated by PMA and ionomycin. f, Summary of 
the number of cells producing IL-13 (top), and co-producing IL-13 and IL-17A 
(middle) or IL-13 and IL-22 (bottom) in each mouse genotype. Error bars for WT 
are mean ± s.d. Experiments were repeated with similar results. g, FACS plots 
analogous to those in e (excluding Tcrd−/−), with mice treated with IL-23 and IL-1β 
with intracellular cytokine staining done without ex vivo PMA and ionomycin 
treatment (representative plots of n = 4 mice for each group, two experiments). 
h, Representative FACS plots show production of IL-13 (reported by human 
CD4) and IL-17A (reported by human NGFR) in skin ILCs from reporter mice 
(Il13Smart/SmartIl17aSmart/Smart) on the wild-type background (Methods) (n = 3 
biological replicas per group). ILCs were defined as CD45.2+CD90.2+IL-7Rα+ and 
Lin− (CD3, CD4, CD5, CD8α, CD11b, CD11c, CD19, NK1.1, F4/80, Gr-1, CD49b, 
FcεRIa and Ter119). i, IL-23 skin injection model in Il5cre/tdTomato (Red5) mouse 
strain. Increase in skin thickness (mean ± s.d.) over time is similar in 
homozygote Red5/Red5 mouse strain lacking expression of IL-5 cytokine 
(black) and in Red5/+ mouse (blue). n = 8 mice for both groups, two 
independent experiments; repeated measures two-way ANOVA with Geisser–
Greenhouse correction, Bonferroni adjusted.
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Extended Data Fig. 10 | Methods-related visualizations of the scRNA-seq 
analysis. a, b, Axes of variation in gene expression profiles captured by 
diffusion components (Methods). Diffusion components (DCs) calculated on 
standardized expression data (Pearson residuals of scTransform-corrected 
counts) capture axes of variation related to topic modelling. a, For DCs 1–14 
(panels), FDL embedding (as in Fig. 1e) of cell profiles (dots), coloured by the 
coordinate value (colour bar; low, blue; high, red) for each diffusion 
component. b, For topics 1–4 and 17, scatter plots show cell profiles (dots), 
plotted by DC 1 versus DC 2 (top), or DC 3 versus DC 4 (bottom), and coloured by 
topic weight (colour bar: low, grey; high, teal). DCs 2–4 were used to determine 
start and end positions for the directed-diffusion trajectories (Fig. 2b), because 
they reflect extremal points of the gene expression spectrum. c, Interpolation 
validation for Waddington-OT results (Methods). Interpolating cell 
distributions at intermediate time points by optimal transport (OT) captures 
the actual distributions better than random interpolation. Entropic OT 
distance (Wasserstein distance, d) between different pairs (colours) of 
empirical probability distributions, plotted for consecutive triples of time 
points (midpoint, x axis; for example, 1 refers to triple of days 0, 1, 2), for cell 
distributions at previous, current, and next time points (‘previous’, ‘real’ and 
‘next’, respectively), and for OT and random interpolations between the 
previous and next time point distributions. d–g, Topic-9-associated genes and 
additional information about cell selections for directed-diffusion trajectories 
in Fig. 2b (Methods). d, FDL embedding (as in Fig. 1e) of cell profiles, coloured 

by normalized expression (log-transformed scTransform-corrected counts; 
colour bar: low, grey; high, maroon) for genes that are differentially expressed 
in cells up-weighted for topic 9, compared with other cells. e, Visualization of 
cell profiles (dots), coloured by membership in the start (cyan) or end (fuchsia) 
sets (or grey, otherwise), for each of the directed-diffusion trajectories. Plots 
show diffusion components (top; DC2, x axis, DC4, y axis for quiescent-to-ILC3-
like and ILC2-to-quiescent-like trajectories; DC2, x axis, DC3, y axis for ILC2-to-
ILC3-like and cloud-to-ILC3-like trajectories), and FDL embedding (bottom, as 
in Fig. 1e). f, Visualization of cells explicitly excluded from the potential starting 
set for the cloud-to-ILC3-like trajectory. For topics 1–3, cells (dots) are plotted 
by diffusion components (top; DC2, x axis, DC3, y axis) and FDL embedding 
(bottom), and coloured brightly if their topic weight exceeds the threshold of 
0.2, or grey otherwise. Analogous panels for topic 17 showing DC1/DC2 and 
with threshold 0.08. g, Cell selection for directed-diffusion trajectories in 
Fig. 2b. For each trajectory (panel), the proportion of sampled paths that a cell 
occurred in versus the mean normalized pseudotime position for cells (dots) 
from all time points. Cells are considered part of the trajectory (in orange) if 
they occur at the very start or end of the paths (0 and 1 on x axis, grey dashed 
lines), or are contained in sufficiently many sampled paths, as determined by 
either a global quantile cut-off (blue line) or an adaptive quantile cut-off that 
depends on the average path position of the cell (red line, spline quantile 
regression), with different cut-offs chosen for each trajectory. Remaining cells 
(grey) are excluded from the trajectory.
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Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection scRNA-seq libraries were sequenced using a 75 cycle Nextseq 500 high output V2 kit 
scATACseq libraries were sequenced on an Illumina Nextseq 550, using a Nextseq High Output kit and sequenced to a depth of ~130 
million reads per sample (~5,000-6,000 cells per sample) with paired-end reads according to the recommendations by 10x Genomics.

Data analysis All graphing and associated statistical analysis was performed using GraphPad Prism 9. BD FACSDiva 7 Software was used to collect raw 
data files from all flow cytometry experiments. All resultant data files were analyzed using FlowJo version 9 or newer. 
scATACseq data was analyzed CellRanger ATAC mkfastq (v1.1.0) and 10x Genomics scATAC Barcode Multiplet cleanup tool (v_1.0, shared 
by 10x Genomics on Nov 4th, 2019), Cumulus (v0.10.0, https://github.com/klarman-cell-observatory/cumulus), Signac (v0.1.6, https://
github.com/timoast/signac) with ChromVAR included and a custom code available at Github: https://github.com/klarman-cell-
observatory/skin-ILCs 
scRNAseq data was analyzed with CellRanger software (v1.3) (10x Genomics),scCloud (v0.9.1, https://github.com/klarman-cell-
observatory/scCloud), Seurat v3, Scanpy (v1.4.4.post1), ForceAtlas2 (v0.3.5), CountClust Bioconductor package (v1.12.0), Waddington-OT 
package (v1.0.8), Python (v3.7.3), CountClust Bioconductor package (v1.12.0), which wraps maptpx (v1.9.2), R (v3.6.0), R packages splines 
(v.3.6.1) and quantreg (v5.51), and a custom code available at Github: https://github.com/klarman-cell-observatory/skin-ILCs

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All genomics data produced for this study have been deposited in the NCBI Gene Expression Omnibus (GEO), accession GSE149622. Our browsable, processed 
datasets are available at https://singlecell.broadinstitute.org/single_cell/study/SCP781/skin-ilc-psoriasis. 
Our code is available at https://github.com/klarman-cell-observatory/skin-ILCs. 
We used the following publicly available resources, as described in Methods: the mm10 mouse genome assembly from 10x (v3.0.0, Ensembl 93, https://
support.10xgenomics.com/single-cell-gene-expression/software/release-notes/build), for scRNA-Seq read alignment; the mm10 genome assembly from 10x (v1.1.0, 
https://cf.10xgenomics.com/supp/cell-atac/refdata-cellranger-atac-mm10-1.1.0.tar.gz) for scATAC-seq read alignment; the AddGene plasmid repository for the 
sequences of Gfp (sequence #229542, https://www.addgene.org/browse/sequence/229542/), Bfp (vector sequence #6363, https://www.addgene.org/browse/
sequence_vdb/6363/); scRNA-Seq data in GEO on human T-Cells (accession GSE126030) and mouse lung ILCs (GSE102299); and the Biomart database (from 
Ensembl version 101, http://aug2020.archive.ensembl.org/biomart/martview/) for the determination of human-mouse orthologs. 
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Sample size No statistical methods were used to predetermine sample size for experimentation. Given the minimal experimental variation in ILC assays 
using inbred mouse strains as a cell source, a minimum of three technical replicates were used per sample in vitro. In vivo experiments were 
conducted with samples sizes consistent with the known literature.

Data exclusions No technical replicates were excluded from any presented data.

Replication Using the data quality parameters described above, all experiments shown in the manuscript were performed independently at least twice.

Randomization Mice were randomly assigned to treatment groups after matching for sex and age.

Blinding No blinding was performed as all data and analysis is quantitative and not qualitative in nature.
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Methods
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ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Anti-human CD271/NGFR clone:ME20.4 BioLegend cat#345106 1:20 

Anti-human CD4 clone:RPA-T4 BioLegend cat#300514 1:20 
Anti-mouse B220 APC clone:RA3-6B2 BioLegend cat#103212 1:400 
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Anti-mouse B220 FITC clone:RA3-6B2 BioLegend cat#103206 1:400 
Anti-mouse CD103 FITC clone:2E7 BioLegend cat#121420 1:200 
Anti-mouse CD11b APC clone:M1/70 BioLegend cat#101212 1:400 
Anti-mouse CD11b Biotin clone:M1/70 BioLegend cat#101204 1:300 
Anti-mouse CD11b BV421 clone:M1/70 BioLegend cat#101236 1:300 
Anti-mouse CD11b FITC clone:M1/70 BioLegend cat#101206 1:400 
Anti-mouse CD11c APC clone:N418 BioLegend cat#117310 1:400 
Anti-mouse CD11c Biotin clone:N418 BioLegend cat#117304 1:300 
Anti-mouse CD11c FITC clone:N418 BioLegend cat#117306  1:400 
Anti-mouse CD11c PB clone:N418 BioLegend cat#117322 1:300 
Anti-mouse CD127(IL-7R) APC-eFluor 780 clone:A7R34 Invitrogen cat#47-1271-82 1:100 
Anti-mouse CD127/IL7Ra APC clone:A7R34 BioLegend cat#135012 1:200 
Anti-mouse CD135 PE clone:A2F10 BioLegend cat#135306 1:200 
Anti-mouse CD19 APC clone:6D5 BioLegend cat#115512 1:400 
Anti-mouse CD19 Biotin clone:6D5 BioLegend cat#115504 1:200 
Anti-mouse CD19 BV421 clone:6D5 BioLegend cat#115549 1:300 
Anti-mouse CD19 FITC clone:6D5 BioLegend cat#115506  1:400 
Anti-mouse CD25 BV605 clone:PC61 BioLegend cat#102036 1:200 
Anti-mouse CD3 BV711 clone:17A2 BioLegend cat#100241 1:400 
Anti-mouse CD335 (NKp46) BV421 clone:29A1.4 BioLegend cat#137612 1:300 
Anti-mouse CD3e APC clone:145-2C11 BioLegend cat#100312 1:400 
Anti-mouse CD3e FITC clone:145-2C11 BioLegend cat#100306 1:400 
Anti-mouse CD3e PE clone:145-2C11 BioLegend cat#100308 1:400 
Anti-mouse CD3e PE/Cy7 clone:17A2 BioLegend cat#100220 1:200 
Anti-mouse CD3e Biotin clone:145-2C11 BioLegend cat#100304 1:100 
Anti-mouse CD4 APC clone:GK 1.5 BioLegend cat#100412 1:400 
Anti-mouse CD4 BV711 clone:RM4-5 BioLegend cat#100550 1:200 
Anti-mouse CD4 FITC clone:H129.19 BioLegend cat#130308 1:400 
Anti-mouse CD45 AF-700 clone:30-F11 BioLegend cat#110724 1:400 
Anti-mouse CD45 BUV395 clone:30-F11 BD cat#564279 1:300 
Anti-mouse CD45 BV605 clone:30-F11 BioLegend cat#103140 1:400 
Anti-mouse CD45 BV711 clone:30-F11 BioLegend cat#103147 1:300 
Anti-mouse CD45.1 AL700 clone:A20 BioLegend cat#110724 1:400 
Anti-mouse CD45.2 AL700 clone:104 BioLegend cat#109822 1:400 
Anti-mouse CD45R/B220 Biotin clone:RA3-6B2 BioLegend cat#103204 1:200 
Anti-mouse CD49b (pan-NK cells) PB clone:DX5 BioLegend cat#108918 1:300 
Anti-mouse CD5 Biotin clone:53-7.3 BioLegend cat#100604 1:400 
Anti-mouse CD5 PB clone:53-7.3 BioLegend cat#100642 1:300 
Anti-mouse CD8a APC clone:53-6.7 BioLegend cat#100712 1:400 
Anti-mouse CD8a FITC clone:53-6.7 BioLegend cat#100706 1:400 
Anti-mouse CD8a BV785 clone:53-6.7 BioLegend cat#100750 1:200 
Anti-mouse CD8a PB clone:53-6.7 BioLegend cat#100725 1:200 
Anti-mouse CD90.1 APC-Cy7 clone:OX-7 BioLegend cat#202520 1:1000 
Anti-mouse CD90.2 APC-Cy7 clone:30-H12 BioLegend cat#105328 1:1000 
Anti-mouse CD90.2 BV605 clone:30-H12 BioLegend cat#105343 1:1000 
Anti-mouse CD90.2 BV785 clone:30-H12 BioLegend cat#105331 1:1000 
Anti-mouse F4/80 Biotin clone:BM8 BioLegend cat#123106 1:200 
Anti-mouse F4/80 PB clone:BM8 BioLegend cat#123124 1:300 
Anti-mouse FcEr1a APC clone:MAR-1 BioLegend cat#134316 1:400 
Anti-mouse FcEr1a FITC clone:MAR-1 BioLegend cat#134306 1:400 
Anti-mouse FcEr1a Biotin clone:MAR-1 BioLegend cat#134304 1:200 
Anti-mouse FcEr1a PB clone:MAR-1 Biolegend cat#134314 1:300 
Anti-mouse GILZ PE clone:CFMKG15 Invitrogen cat#12-4033-82 1:100 
Anti-mouse Gr-1 BV421 clone:RB6-8C5  BioLegend cat#108445 1:300 
Anti-mouse Gr1 APC clone:RB6-8C5 BioLegend cat#108412 1:400 
Anti-mouse Gr1 Biotin clone:RB6-8C5 BioLegend cat#108404 1:400 
Anti-mouse Gr1 FITC clone:RB6-8C5 BioLegend cat#108406  1:400 
Anti-mouse IL-13 PE clone:eBIO13A Invitrogen cat#12-7133-41 1:100 
Anti-mouse IL-17A AF700 clone:TC11-18H10.1 BioLegend cat#506914 1:200 
Anti-mouse IL-17A BV421 clone:TC11-18H10.1 BioLegend cat#506926 1:100 
Anti-mouse IL-22 APC clone:IL22JOP eBioscience cat#17-7222-82 1:100 
Anti-mouse IL-5 PE clone:TRFK5 BioLegend cat#504304 1:200 
Anti-mouse IL-13 AF488 clone:TWAJ eBioscience cat#53-7133-82 1:200 
Anti-mouse IL18Ra PE-Cy7 clone:P3TUNYA eBioscience cat#25-5183-82 1:200 
Anti-mouse IL33R/ST2 BV421 clone:U29-93 BD Biosciences cat#566309 1:200 
Anti-mouse Ly6G Biotin clone:1A8 BioLegend cat#127604 1:300 
Anti-mouse NK-1.1 BV421 clone:PK136 BioLegend cat#108741  1:300 
Anti-mouse NK1.1 APC clone:PK136 BioLegend cat#108710  1:400 
Anti-mouse NK1.1 Biotin clone:PK136 BioLegend cat#108704 1:100 
Anti-mouse NK1.1 FITC clone:PK136 BioLegend cat#108706  1:400 
Anti-mouse TCR γ/δ BV421 clone:GL3 BioLegend cat#118120  1:500 
Anti-mouse TCRb APC clone:H57-597 BioLegend cat#109212  1:400 
Anti-mouse TCRb BV711 clone:H57-597 BioLegend cat#109243  1:400 
Anti-mouse TCRb FITC clone:H57-597 BioLegend cat#109206  1:400 
Anti-mouse TCRg PE-Cy7 clone:GL BioLegend cat#118124  1:400 



4

nature research  |  reporting sum
m

ary
April 2018

Anti-mouse TCR  Biotin H57-597 BioLegend cat#109204 1:200 
Anti-mouse TCR  Biotin eBioGL3 eBioscience cat#13-5711-85 1:200 
Anti-mouse TER-119 Biotin clone:TER-119 BioLegend cat#116204 1:200 
Anti-mouse TER-119 BV421 clone:TER-119 BioLegend cat#116234  1:300 
Anti-mouse Ter119 APC clone:TER-119 BioLegend cat#116212  1:400 
Anti-mouse Ter119 FITC clone:TER-119 BioLegend cat#116206  1:400 
Anti-mouse/human KLRG-1 Percp-Cy5.5 clone:2F1/KLRG1 BioLegend cat#138417 1:200 
Fixable Viability Dye eFluor® 780 eBioscience cat#65-0865-18 1:1000 
Streptavidin V500 BD cat#561419 1:800 

Validation All antibodies are commercially available and validated by manufacturer (Biolegend, eBioscience) additionally single staining 
controls were validated in the laboratory

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Mus musculus, C57BL/6, Tcrd-/- and Rosa26flox-stop-floxYFP Ai3(RCL-EYFP) mice were purchased from the Jackson Laboratories. 
Rag1-/- and Rag2-/-IL2rg-/- were purchased from Taconic Biosciences. IL-5 Cre, dTomato (Red5/R5), Il13Smart/SmartIl17Smart/
Smart mice, and Il13YetCre/+;R26RAi14RFP/+  were provided by Dr Locksley.  KLF2-GFPtg/tg mice59 kindly provided by K. 
Hogquist. IL-17AGFP and IL-22BFP mice are from our laboratory. All sex-matched male and female, 10-14 weeks old 
Animals were housed in individually ventilated (IVC) filter top bonneted cages in a room with controlled access. Animals are 
provided food and water ad libitum. Rooms are maintained at 72F degrees +/- 2 degrees with 70% humidity.

Wild animals Study did not involve wild animals

Field-collected samples Study did not involve field-collected samples

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Ventral and dorsal dermal sheets of ears were separated, minced and incubated in RPMI medium containing 0.4mg ml-1 
Liberase TM (Roche Diagnostics) and 60ng/ul DNAseI (Sigma). After digestion, the suspension was passed through and further 
mechanically disrupted with syringe plunger and a 70uM cell strainer. Lymphocytes were enriched by gradient centrifugation in 
27.5% Optiprep solution (Sigma) and RPMI medium containing 5% Fetal Bovine Serum. Spleens were mechanically disrupted 
using a syringe plunger in complete RPMI. Cells were filtered through 70- m nylon mesh and washed. 
For intracellular cytokine staining, cells were re-stimulated for 6 h at 37°C with phorbol 12-myristate 13-acetate (PMA) (Sigma, 
50 ng ml 1) and ionomycin (Sigma, 1 g ml 1) in the presence of Golgistop (BD Bioscience) added after initial 2h of stimulation. 
Next, cells were fixed and stained with BS Cytofix/Cytoperm reagent (BD Biosciences) according to the manufacturer’s protocol. 
Intracellular cytokines were stained with antibodies to IL-13, IL-17A and IL-22

Instrument BD LSRII custom order product

Software BD FACSDiva 7 Software was used to collect raw data files from all flow cytometry experiments. All resultant data files were 
analyzed using FlowJo version 9 or newer

Cell population abundance Cells were purified using a BD FACS Aria as described in methods. Due to limited cell numbers, all resultant cells were processed 
for scRNAseq and ATACseq. The purity could be assessed bioinformaticaly on sequenced scRNAseq samples.

Gating strategy For FACS analysis of ILCs and sorting for scRNAseq  the gating was set up as FSC-A, SSC-A live cells >> SSC-W, SSC-H singlets >> 
FSC-H, FC-W singlets >> CD45+ >> lineage(CD3e, CD4, CD8, CD11b, CD11c, CD19, B220, NK1.1, Ter119, Gr1, FcEr1a)-,CD90+ >> 
TCRgd- 
For ATACseq cells were sorted FSC-A, SSC-A live cells >> SSC-W, SSC-H singlets >> FSC-H, FSC-W singlets >> CD45+ >> 
lineage(CD4, CD8, CD11b, CD11c, CD19, B220, NK1.1, Ter119, Gr1, FcEr1a)-,CD90+ >> CD3e-, TCRgd- 
For IL-13/IL-17 and IL-13/IL-22 analysis in non-reporter mice the ILC gating was set as FSC-A, SSC-A live cells >> SSC-W, SSC-H 
singlets >> FSC-H, FSC-W singlets >> CD45+ >>lineage(CD3e CD4, CD8, CD11b, CD11c, CD19, B220, NK1.1, Ter119, Gr1, FcEr1a)-
>> TCRb and TCRg negative  
For IL-13/IL-17 reporter and IL-13cre, R26RFP reporter the ILC gating was set as FSC-A, SSC-A live cells >> SSC-W, SSC-H singlets 
>> CD45+, live >> CD45+>> CD90.2, IL-7Ra positive >> lineage (CD3, CD4, CD5, CD8 , CD11b, CD11c, CD19, NK1.1, Nkp46, F4/80, 
Gr-1, CD49b, FcEr1a, and Ter119)- 
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For KLF-GFP and Red5 reporter mice the ILC sorting for in vitro cultures was set as FSC-A, SSC-A live cells >> SSC-W, SSC-H 
singlets >> CD45+>> IL-7Ra+, lineage(CD3e, CD5, CD11b, CD11c, CD19, B220, NK1.1, Ter119, Gr1, FcEr1a, TCRb, TCRg)- >> CD103
+ for Red5 reporter. 

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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